--- license: apache-2.0 library_name: timm pipeline_tag: image-classification tags: - image-classification - ai-detection - vit datasets: - your-username/ai-generated-vs-real metrics: - accuracy - f1 --- # AI Source Detector (ViT-Base) Detects *and* classifies the source of AI-generated images into **five** classes (`stable_diffusion`, `midjourney`, `dalle`, `real`, `other_ai`). ## Model Details * **Architecture:** ViT-Base Patch-16 × 224 * **Parameters:** 86 M * **Fine-tuning epochs:** 10 * **Optimizer:** AdamW (lr = 3e-5, wd = 0.01) * **Hardware:** 1× NVIDIA RTX 4090 (24 GB) ## Training Data | Class | Images | |-------|-------:| | Stable Diffusion | 12 000 | | Midjourney | 10 500 | | DALL-E 3 | 9 400 | | Real | 11 800 | | Other AI | 8 200 | Total ≈ 52 k images - 80 % train / 10 % val / 10 % test. ## Evaluation | Metric | Top-1 | Macro F1 | |--------|------:|---------:| | Validation | 92.8 % | 0.928 | | Test | 91.6 % | 0.914 |
Confusion Matrix (click to open)
## Usage ```python from transformers import ViTImageProcessor, ViTForImageClassification, pipeline classifier = pipeline( task="image-classification", model="yaya36095/ai-source-detector", top_k=1 ) classifier("demo.jpg") # → [{'label': 'stable_diffusion', 'score': 0.97}]