--- license: apache-2.0 datasets: - open-r1/OpenR1-Math-220k - yentinglin/s1K-1.1-trl-format - simplescaling/s1K-1.1 language: - en metrics: - accuracy base_model: - mistralai/Mistral-Small-24B-Instruct-2501 pipeline_tag: text-generation tags: - reasoning model-index: - name: yentinglin/Mistral-Small-24B-Instruct-2501-reasoning results: - task: type: text-generation dataset: name: MATH-500 type: MATH metrics: - name: pass@1 type: pass@1 value: 0.95 verified: false source: name: yentinglin/zhtw-reasoning-eval-leaderboard url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard - task: type: text-generation dataset: name: AIME 2025 type: AIME metrics: - name: pass@1 type: pass@1 value: 0.5333 verified: false source: name: yentinglin/zhtw-reasoning-eval-leaderboard url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard - task: type: text-generation dataset: name: AIME 2024 type: AIME metrics: - name: pass@1 type: pass@1 value: 0.6667 verified: false source: name: yentinglin/zhtw-reasoning-eval-leaderboard url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard - task: type: text-generation dataset: name: GPQA Diamond type: GPQA metrics: - name: pass@1 type: pass@1 value: 0.62022 verified: false source: name: yentinglin/zhtw-reasoning-eval-leaderboard url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard --- # Mistral-Small-Reasoning This model is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501), specifically optimized for mathematical reasoning tasks. It has been fine-tuned on datasets including [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), and [s1K-1.1](https://huggingface.co/datasets/simplescaling/s1K-1.1), aiming to enhance its reasoning capabilities. ## Model Details ### Model Description - **Developed by:** [Yenting Lin](https://www.linkedin.com/in/yen-ting-lin-416732b3/) - **Funded by:** [Ubitus](https://ubitus.net) - **Model type:** Instruction-tuned language model for reasoning - **Language(s) (NLP):** English (en) - **License:** Apache 2.0 - **Finetuned from model:** [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) ## How to Get Started with the Model A demo is available at [twllm.com](https://twllm.com/models/yentinglin/mistral-sft), and inference can be run using vLLM or sglang. ## Training Details The model was trained using **4×8 H100 GPUs**, provided by [**Ubitus**](https://ubitus.net). [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See Training config axolotl version: [`a98526ef7843a3e8aa006f260e6b4fb8912b5f1a`](https://github.com/axolotl-ai-cloud/axolotl/tree/a98526ef7843a3e8aa006f260e6b4fb8912b5f1a) ```yaml base_model: mistralai/Mistral-Small-24B-Instruct-2501 plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true datasets: - path: yentinglin/s1K-1.1-trl-format type: chat_template chat_template: tokenizer_default field_messages: messages message_field_role: role message_field_content: content - path: open-r1/OpenR1-Math-220k type: chat_template chat_template: tokenizer_default field_messages: messages message_field_role: from message_field_content: value dataset_prepared_path: val_set_size: 0.0 output_dir: ./placeholder/ sequence_len: 32768 sample_packing: true eval_sample_packing: False pad_to_sequence_len: true wandb_project: Reasoning wandb_entity: wandb_watch: wandb_name: Mistral-24B-SFT-220k wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 5 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false logging_steps: 1 flash_attention: true warmup_ratio: 0.1 saves_per_epoch: 2 weight_decay: 0.0 deepspeed: deepspeed_configs/zero3_bf16.json special_tokens: pad_token: "" ```

## Evaluation The evaluation code is available at [Hugging Face Open-R1](https://github.com/huggingface/open-r1). Note that I have updated the AIME 25 dataset to the full set, available at [AIME 2025](https://huggingface.co/datasets/yentinglin/aime_2025). Our results below are averaged over multiple runs. See our eval details [here.](https://huggingface.co/datasets/yentinglin/zhtw-reasoning-details-_fsx_ubuntu_yentinglin_ckpt_run_20250214_1600_checkpoint-800_) | Pass@1 | # Params | MATH-500 | AIME 2025 | AIME 2024 | GPQA Diamond | |-----------------------------------|---------|---------|-----------|-----------|--------------| | **Mistral-24B-Reasoning (Ours)** | 24B | 95.0 | 53.33 | 66.67 | 62.02 | | Mistral-24B-Instruct | 24B | 70.6 | - | - | 45.3 | | s1.1-32B | 32B | 93.2 | 40.0 | 56.7 | 61.62 | | LIMO | 32B | 94.8 | 36.67 | 57.1 | 59.09 | | DeepSeek-R1-Distill-Llama-70B | 70B | 94.5 | 46.67 | 70.0 | 65.2 | | DeepSeek-R1-Distill-Qwen-32B | 32B | 94.3 | 60.0 | 72.6 | 62.1 | | DeepSeek-R1 | 671B | 97.3 | 70.0 | 72.6 | 71.5 | | o1 | - | 96.4 | 79.0 | - | 75.7 | | o3-mini (high) | - | 97.9 | 86.5 | - | 77.2 | | o3-mini (medium) | - | 97.3 | 76.5 | - | 74.9 | ## Citation If you use this model, please cite: ```bib @article{yentinglin2025_mistral_reasoning, author = {Yenting Lin}, title = {Mistral-Small-24B-Instruct-2501-reasoning}, journal = {Hugging Face}, year = {2025}, url = {https://huggingface.co/yentinglin/Mistral-Small-24B-Instruct-2501-reasoning} } ``` # Disclaimer This model is provided “as‑is” and without warranties of any kind. Users are solely responsible for evaluating the accuracy and suitability of the outputs. The developers assume no liability for any direct or indirect damages arising from its use. The model is strictly not intended for high‑risk applications such as medical diagnosis, legal advice, or financial investment. For such use cases, please consult qualified professionals. 本模型「如是」(as‑is)提供,使用者須自行評估結果之正確性與適用性。開發者對於使用本模型所引發之任何直接或間接損失,不承擔任何法律責任。 嚴禁用於醫療診斷、法律諮詢、金融投資等高風險場景;若有相關需求,請尋求專業人員協助。