Update flax to pytorch script
Browse files- flax_to_pytorch.py +5 -47
flax_to_pytorch.py
CHANGED
|
@@ -1,47 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
# pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
| 8 |
-
# pt_model.save_pretrained(".")
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
-
# # tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
| 12 |
-
# # tf_model.save_pretrained(".")
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
#!/usr/bin/env python
|
| 16 |
-
import tempfile
|
| 17 |
-
import jax
|
| 18 |
-
import numpy as np
|
| 19 |
-
import torch
|
| 20 |
-
from jax import numpy as jnp
|
| 21 |
-
from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration, T5ForConditionalGeneration
|
| 22 |
-
|
| 23 |
-
def to_f32(t):
|
| 24 |
-
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
| 25 |
-
|
| 26 |
-
def main():
|
| 27 |
-
# Saving extra files from config.json and tokenizer.json files
|
| 28 |
-
tokenizer = AutoTokenizer.from_pretrained("./")
|
| 29 |
-
tokenizer.save_pretrained("./")
|
| 30 |
-
# Temporary saving bfloat16 Flax model into float32
|
| 31 |
-
tmp = tempfile.mkdtemp()
|
| 32 |
-
flax_model = FlaxT5ForConditionalGeneration.from_pretrained("./")
|
| 33 |
-
flax_model.params = to_f32(flax_model.params)
|
| 34 |
-
flax_model.save_pretrained(tmp)
|
| 35 |
-
# Converting float32 Flax to PyTorch
|
| 36 |
-
pt_model = T5ForConditionalGeneration.from_pretrained(tmp, from_flax=True)
|
| 37 |
-
pt_model.save_pretrained("./", save_config=False)
|
| 38 |
-
|
| 39 |
-
input_ids = np.asarray(2 * [128 * [0]], dtype=np.int32)
|
| 40 |
-
input_ids_pt = torch.tensor(input_ids)
|
| 41 |
-
logits_pt = pt_model(input_ids_pt).logits
|
| 42 |
-
print(logits_pt)
|
| 43 |
-
logits_fx = flax_model(input_ids).logits
|
| 44 |
-
print(logits_fx)
|
| 45 |
-
|
| 46 |
-
if __name__ == "__main__":
|
| 47 |
-
main()
|
|
|
|
| 1 |
+
from transformers import T5ForConditionalGeneration, TFT5ForConditionalGeneration
|
| 2 |
+
pt_model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True)
|
| 3 |
+
pt_model.save_pretrained(".")
|
| 4 |
+
tf_model = TFT5ForConditionalGeneration.from_pretrained(".", from_pt=True)
|
| 5 |
+
tf_model.save_pretrained(".")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|