Yannick Kirchhoff
		
	commited on
		
		
					Commit 
							
							·
						
						2f75b90
	
1
								Parent(s):
							
							8caee1f
								
update README
Browse files- .gitattributes +1 -0
 - README.md +73 -3
 - assets/BreastDivider.png +3 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text 
     | 
|
| 33 | 
         
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
| 
         | 
|
| 33 | 
         
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 36 | 
         
            +
            *.png filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        README.md
    CHANGED
    
    | 
         @@ -1,3 +1,73 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # [MICCAI 2025 WOMEN] BreastDivider: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            **Read the paper:**  [](https://arxiv.org/abs/2507.13830)
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            > **Authors**: Maximilian Rokuss\*, Benjamin Hamm\*, Yannick Kirchhoff\*, Klaus Maier-Hein  
         
     | 
| 7 | 
         
            +
            > \*equal contribution
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            ---
         
     | 
| 10 | 
         
            +
            
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            ## 🧠 Introduction
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            **Breast MRI** plays a pivotal role in breast cancer detection, diagnosis, and treatment planning. **BreastDivider** addresses a critical limitation in breast MRI segmentation: the lack of distinction between the **left and right breasts** in most public datasets and models. 
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            In this work, we introduce the **first publicly available large-scale dataset with explicit left and right breast segmentation labels**, comprising **over 13,000 3D MRI scans**. Accompanying this dataset is a **robust nnU-Net–based segmentation model**, trained specifically to identify and separate left and right breast regions in clinical MRI data. This effort provides a foundation for developing high-quality, anatomically aware tools for breast MRI analysis and offers opportunities for large-scale pretraining.
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            🗂 This repository contains the **model only**\
         
     | 
| 19 | 
         
            +
            📁 The dataset is available [here](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset)\
         
     | 
| 20 | 
         
            +
            🐳 A prebuilt Docker image is available on [DockerHub](https://hub.docker.com/r/ykirchhoff/breastdivider)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            ---
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            ## 🧪 Model
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            The model is based on the [nnU-Net framework](https://github.com/MIC-DKFZ/nnUNet) and was trained on the full [BreastDivider dataset](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset), using a custom configuration that allows both breasts to fit into a single 3D patch.
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            It generalizes well across a variety of MRI modalities, including:
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             - T1-weighted (T1)
         
     | 
| 31 | 
         
            +
             - T1 with contrast (T1+C)
         
     | 
| 32 | 
         
            +
             - T2-weighted (T2)
         
     | 
| 33 | 
         
            +
             - FLAIR
         
     | 
| 34 | 
         
            +
             - Diffusion-weighted imaging (DWI)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            ### 🔧 How to Use
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            #### 🛠️ Manual Installation
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             1. Install nnU-Net following the official [installation instructions](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/installation_instructions.md).
         
     | 
| 41 | 
         
            +
             2. Download the model using git or the huggingface_hub (c.f. [models-downloading](https://huggingface.co/docs/hub/models-downloading))
         
     | 
| 42 | 
         
            +
             3. Run prediction with `nnUNetv2_predict_from_modelfolder -i input_folder -o output_folder -m /path/to/BreastDividerModel`
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            #### 🐳 Docker inference
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            You can use the prebuilt Docker container for easy deployment:\
         
     | 
| 47 | 
         
            +
            **Pull the image:**
         
     | 
| 48 | 
         
            +
            ```
         
     | 
| 49 | 
         
            +
            docker pull ykirchhoff/breastdivider:latest
         
     | 
| 50 | 
         
            +
            ```
         
     | 
| 51 | 
         
            +
            **Run inference:**
         
     | 
| 52 | 
         
            +
            ```
         
     | 
| 53 | 
         
            +
            docker run --ipc=host --rm --gpus all \
         
     | 
| 54 | 
         
            +
              -v "/path/to/input/folder:/mnt/input" \
         
     | 
| 55 | 
         
            +
              -v "/path/to/output/folder:/mnt/output" \
         
     | 
| 56 | 
         
            +
              ykirchhoff/breastdivider:latest \
         
     | 
| 57 | 
         
            +
              /mnt/input /mnt/output
         
     | 
| 58 | 
         
            +
            ```
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            ---
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            ## 📄 Citation
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            If you use this dataset or model in your work, please cite:
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            ```bibtex
         
     | 
| 67 | 
         
            +
            @article{rokuss2025breastdivider,
         
     | 
| 68 | 
         
            +
              title     = {Divide and Conquer: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation},
         
     | 
| 69 | 
         
            +
              author    = {Rokuss, Maximilian and Hamm, Benjamin and Kirchhoff, Yannick and Maier-Hein, Klaus},
         
     | 
| 70 | 
         
            +
              journal   = {arXiv preprint arXiv:2507.13830},
         
     | 
| 71 | 
         
            +
              year      = {2025}
         
     | 
| 72 | 
         
            +
            }
         
     | 
| 73 | 
         
            +
            ```
         
     | 
    	
        assets/BreastDivider.png
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  |