Yannick Kirchhoff commited on
Commit
2f75b90
·
1 Parent(s): 8caee1f

update README

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +73 -3
  3. assets/BreastDivider.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # [MICCAI 2025 WOMEN] BreastDivider: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation
2
+
3
+
4
+ **Read the paper:** [![arXiv](https://img.shields.io/badge/arXiv-2507.13830-B31B1B.svg)](https://arxiv.org/abs/2507.13830)
5
+
6
+ > **Authors**: Maximilian Rokuss\*, Benjamin Hamm\*, Yannick Kirchhoff\*, Klaus Maier-Hein
7
+ > \*equal contribution
8
+
9
+ ---
10
+ ![BreastDivider Overview](assets/BreastDivider.png)
11
+
12
+ ## 🧠 Introduction
13
+
14
+ **Breast MRI** plays a pivotal role in breast cancer detection, diagnosis, and treatment planning. **BreastDivider** addresses a critical limitation in breast MRI segmentation: the lack of distinction between the **left and right breasts** in most public datasets and models.
15
+
16
+ In this work, we introduce the **first publicly available large-scale dataset with explicit left and right breast segmentation labels**, comprising **over 13,000 3D MRI scans**. Accompanying this dataset is a **robust nnU-Net–based segmentation model**, trained specifically to identify and separate left and right breast regions in clinical MRI data. This effort provides a foundation for developing high-quality, anatomically aware tools for breast MRI analysis and offers opportunities for large-scale pretraining.
17
+
18
+ 🗂 This repository contains the **model only**\
19
+ 📁 The dataset is available [here](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset)\
20
+ 🐳 A prebuilt Docker image is available on [DockerHub](https://hub.docker.com/r/ykirchhoff/breastdivider)
21
+
22
+ ---
23
+
24
+ ## 🧪 Model
25
+
26
+ The model is based on the [nnU-Net framework](https://github.com/MIC-DKFZ/nnUNet) and was trained on the full [BreastDivider dataset](https://huggingface.co/datasets/Bubenpo/BreastDividerDataset), using a custom configuration that allows both breasts to fit into a single 3D patch.
27
+
28
+ It generalizes well across a variety of MRI modalities, including:
29
+
30
+ - T1-weighted (T1)
31
+ - T1 with contrast (T1+C)
32
+ - T2-weighted (T2)
33
+ - FLAIR
34
+ - Diffusion-weighted imaging (DWI)
35
+
36
+ ### 🔧 How to Use
37
+
38
+ #### 🛠️ Manual Installation
39
+
40
+ 1. Install nnU-Net following the official [installation instructions](https://github.com/MIC-DKFZ/nnUNet/blob/master/documentation/installation_instructions.md).
41
+ 2. Download the model using git or the huggingface_hub (c.f. [models-downloading](https://huggingface.co/docs/hub/models-downloading))
42
+ 3. Run prediction with `nnUNetv2_predict_from_modelfolder -i input_folder -o output_folder -m /path/to/BreastDividerModel`
43
+
44
+ #### 🐳 Docker inference
45
+
46
+ You can use the prebuilt Docker container for easy deployment:\
47
+ **Pull the image:**
48
+ ```
49
+ docker pull ykirchhoff/breastdivider:latest
50
+ ```
51
+ **Run inference:**
52
+ ```
53
+ docker run --ipc=host --rm --gpus all \
54
+ -v "/path/to/input/folder:/mnt/input" \
55
+ -v "/path/to/output/folder:/mnt/output" \
56
+ ykirchhoff/breastdivider:latest \
57
+ /mnt/input /mnt/output
58
+ ```
59
+
60
+ ---
61
+
62
+ ## 📄 Citation
63
+
64
+ If you use this dataset or model in your work, please cite:
65
+
66
+ ```bibtex
67
+ @article{rokuss2025breastdivider,
68
+ title = {Divide and Conquer: A Large-Scale Dataset and Model for Left–Right Breast MRI Segmentation},
69
+ author = {Rokuss, Maximilian and Hamm, Benjamin and Kirchhoff, Yannick and Maier-Hein, Klaus},
70
+ journal = {arXiv preprint arXiv:2507.13830},
71
+ year = {2025}
72
+ }
73
+ ```
assets/BreastDivider.png ADDED

Git LFS Details

  • SHA256: 9b8fb0a09108715b749b8e3630a1e3377c60d6dd076a3319b28716879596626f
  • Pointer size: 132 Bytes
  • Size of remote file: 3.55 MB