End of training
Browse files- README.md +12 -17
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
-
- Loss: 0.
|
| 25 |
-
- Accuracy: 0.
|
| 26 |
-
- Precision: 0.
|
| 27 |
-
- Recall: 0.
|
| 28 |
-
- F1: 0.
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
@@ -44,29 +44,24 @@ More information needed
|
|
| 44 |
### Training hyperparameters
|
| 45 |
|
| 46 |
The following hyperparameters were used during training:
|
| 47 |
-
- learning_rate:
|
| 48 |
- train_batch_size: 16
|
| 49 |
- eval_batch_size: 16
|
| 50 |
- seed: 42
|
| 51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 52 |
- lr_scheduler_type: linear
|
| 53 |
- lr_scheduler_warmup_ratio: 0.1
|
| 54 |
-
- num_epochs:
|
| 55 |
|
| 56 |
### Training results
|
| 57 |
|
| 58 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 59 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 60 |
-
| 0.
|
| 61 |
-
| 0.
|
| 62 |
-
| 0.
|
| 63 |
-
| 0.
|
| 64 |
-
| 0.
|
| 65 |
-
| 0.2197 | 6.0 | 840 | 0.3765 | 0.7073 | 0.2033 | 0.6098 | 0.3049 |
|
| 66 |
-
| 0.1956 | 7.0 | 980 | 0.1718 | 0.8691 | 0.3214 | 0.2195 | 0.2609 |
|
| 67 |
-
| 0.1636 | 8.0 | 1120 | 0.4758 | 0.7920 | 0.25 | 0.4878 | 0.3306 |
|
| 68 |
-
| 0.1606 | 9.0 | 1260 | 0.3204 | 0.8575 | 0.2958 | 0.2561 | 0.2745 |
|
| 69 |
-
| 0.1556 | 10.0 | 1400 | 0.3544 | 0.8472 | 0.2716 | 0.2683 | 0.2699 |
|
| 70 |
|
| 71 |
|
| 72 |
### Framework versions
|
|
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
+
- Loss: 0.1959
|
| 25 |
+
- Accuracy: 0.8691
|
| 26 |
+
- Precision: 0.3387
|
| 27 |
+
- Recall: 0.2561
|
| 28 |
+
- F1: 0.2917
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
|
|
| 44 |
### Training hyperparameters
|
| 45 |
|
| 46 |
The following hyperparameters were used during training:
|
| 47 |
+
- learning_rate: 1.7040925846794196e-05
|
| 48 |
- train_batch_size: 16
|
| 49 |
- eval_batch_size: 16
|
| 50 |
- seed: 42
|
| 51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 52 |
- lr_scheduler_type: linear
|
| 53 |
- lr_scheduler_warmup_ratio: 0.1
|
| 54 |
+
- num_epochs: 5
|
| 55 |
|
| 56 |
### Training results
|
| 57 |
|
| 58 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 59 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 60 |
+
| 0.4468 | 1.0 | 140 | 0.3926 | 0.8703 | 0.3582 | 0.2927 | 0.3221 |
|
| 61 |
+
| 0.3624 | 2.0 | 280 | 0.2036 | 0.8755 | 0.3333 | 0.1829 | 0.2362 |
|
| 62 |
+
| 0.3061 | 3.0 | 420 | 0.1371 | 0.8973 | 0.75 | 0.0366 | 0.0698 |
|
| 63 |
+
| 0.2535 | 4.0 | 560 | 0.1825 | 0.8768 | 0.375 | 0.2561 | 0.3043 |
|
| 64 |
+
| 0.2381 | 5.0 | 700 | 0.1959 | 0.8691 | 0.3387 | 0.2561 | 0.2917 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
### Framework versions
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1421495416
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:901b1d45a07a5d99f85ae83cd9dd658f1ee7fd82a5db29fc995faee02b8ad52a
|
| 3 |
size 1421495416
|