|
|
--- |
|
|
library_name: transformers |
|
|
license: mit |
|
|
base_model: FacebookAI/roberta-large |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
model-index: |
|
|
- name: roberta-Self-disclosure-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# roberta-Self-disclosure-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current |
|
|
|
|
|
This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0525 |
|
|
- Accuracy: 0.9820 |
|
|
- Precision: 0.7838 |
|
|
- Recall: 0.8286 |
|
|
- F1: 0.8056 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 1.5021066734744005e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_ratio: 0.1 |
|
|
- num_epochs: 10 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
|
| 0.3227 | 1.0 | 109 | 0.0632 | 0.9551 | 0.0 | 0.0 | 0.0 | |
|
|
| 0.1297 | 2.0 | 218 | 0.0649 | 0.9782 | 0.7045 | 0.8857 | 0.7848 | |
|
|
| 0.1211 | 3.0 | 327 | 0.0409 | 0.9692 | 0.6 | 0.9429 | 0.7333 | |
|
|
| 0.1021 | 4.0 | 436 | 0.0599 | 0.9730 | 0.64 | 0.9143 | 0.7529 | |
|
|
| 0.0797 | 5.0 | 545 | 0.0907 | 0.9756 | 0.66 | 0.9429 | 0.7765 | |
|
|
| 0.0746 | 6.0 | 654 | 0.1045 | 0.9730 | 0.6346 | 0.9429 | 0.7586 | |
|
|
| 0.0607 | 7.0 | 763 | 0.0720 | 0.9820 | 0.7333 | 0.9429 | 0.825 | |
|
|
| 0.0419 | 8.0 | 872 | 0.0771 | 0.9782 | 0.7045 | 0.8857 | 0.7848 | |
|
|
| 0.0632 | 9.0 | 981 | 0.0536 | 0.9846 | 0.7949 | 0.8857 | 0.8378 | |
|
|
| 0.0456 | 10.0 | 1090 | 0.0525 | 0.9820 | 0.7838 | 0.8286 | 0.8056 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.49.0 |
|
|
- Pytorch 2.5.1+cu124 |
|
|
- Datasets 2.21.0 |
|
|
- Tokenizers 0.21.0 |
|
|
|