--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-Self-disclosure-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current results: [] --- # roberta-Self-disclosure-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0525 - Accuracy: 0.9820 - Precision: 0.7838 - Recall: 0.8286 - F1: 0.8056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5021066734744005e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3227 | 1.0 | 109 | 0.0632 | 0.9551 | 0.0 | 0.0 | 0.0 | | 0.1297 | 2.0 | 218 | 0.0649 | 0.9782 | 0.7045 | 0.8857 | 0.7848 | | 0.1211 | 3.0 | 327 | 0.0409 | 0.9692 | 0.6 | 0.9429 | 0.7333 | | 0.1021 | 4.0 | 436 | 0.0599 | 0.9730 | 0.64 | 0.9143 | 0.7529 | | 0.0797 | 5.0 | 545 | 0.0907 | 0.9756 | 0.66 | 0.9429 | 0.7765 | | 0.0746 | 6.0 | 654 | 0.1045 | 0.9730 | 0.6346 | 0.9429 | 0.7586 | | 0.0607 | 7.0 | 763 | 0.0720 | 0.9820 | 0.7333 | 0.9429 | 0.825 | | 0.0419 | 8.0 | 872 | 0.0771 | 0.9782 | 0.7045 | 0.8857 | 0.7848 | | 0.0632 | 9.0 | 981 | 0.0536 | 0.9846 | 0.7949 | 0.8857 | 0.8378 | | 0.0456 | 10.0 | 1090 | 0.0525 | 0.9820 | 0.7838 | 0.8286 | 0.8056 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0