--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-Suggestions-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current results: [] --- # roberta-Suggestions-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.9255 - Precision: 0.5882 - Recall: 0.5714 - F1: 0.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.878285533930529e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4106 | 1.0 | 173 | 0.5091 | 0.7933 | 0.2541 | 0.6714 | 0.3686 | | 0.2807 | 2.0 | 346 | 0.0956 | 0.9114 | 0.6667 | 0.0286 | 0.0548 | | 0.2358 | 3.0 | 519 | 0.0803 | 0.9101 | 0.0 | 0.0 | 0.0 | | 0.1777 | 4.0 | 692 | 0.1143 | 0.9358 | 0.6613 | 0.5857 | 0.6212 | | 0.1659 | 5.0 | 865 | 0.1055 | 0.9307 | 0.6 | 0.6857 | 0.64 | | 0.2001 | 6.0 | 1038 | 0.1580 | 0.9332 | 0.65 | 0.5571 | 0.6 | | 0.1621 | 7.0 | 1211 | 0.1430 | 0.9281 | 0.5854 | 0.6857 | 0.6316 | | 0.1263 | 8.0 | 1384 | 0.1817 | 0.9320 | 0.6104 | 0.6714 | 0.6395 | | 0.1101 | 9.0 | 1557 | 0.1930 | 0.9281 | 0.6061 | 0.5714 | 0.5882 | | 0.1033 | 10.0 | 1730 | 0.2123 | 0.9255 | 0.5882 | 0.5714 | 0.5797 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0