Upload grpo_train.py with huggingface_hub
Browse files- grpo_train.py +492 -0
grpo_train.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
import glob
|
| 6 |
+
import numpy as np
|
| 7 |
+
import re
|
| 8 |
+
import logging
|
| 9 |
+
import random
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from typing import Dict, List, Optional, Any, Tuple
|
| 12 |
+
from functools import partial
|
| 13 |
+
|
| 14 |
+
from datasets import Dataset as HFDataset
|
| 15 |
+
from transformers import (
|
| 16 |
+
AutoTokenizer,
|
| 17 |
+
AutoModelForCausalLM,
|
| 18 |
+
Trainer,
|
| 19 |
+
TrainingArguments,
|
| 20 |
+
HfArgumentParser,
|
| 21 |
+
set_seed,
|
| 22 |
+
TrainerCallback,
|
| 23 |
+
DataCollatorForLanguageModeling
|
| 24 |
+
)
|
| 25 |
+
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
| 26 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 27 |
+
import bitsandbytes as bnb
|
| 28 |
+
from trl import GRPOConfig, GRPOTrainer
|
| 29 |
+
from accelerate import Accelerator
|
| 30 |
+
|
| 31 |
+
# Configure logging
|
| 32 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 33 |
+
logger = logging.getLogger(__name__)
|
| 34 |
+
|
| 35 |
+
def extract_answer(solution_text: str):
|
| 36 |
+
"""Extract the answer from the model's response using regex patterns."""
|
| 37 |
+
boxed_pattern = r'\\boxed\{([^}]*)\}'
|
| 38 |
+
matches = re.findall(boxed_pattern, solution_text)
|
| 39 |
+
if matches:
|
| 40 |
+
return matches[-1].strip()
|
| 41 |
+
|
| 42 |
+
# Try to find a numeric answer if no boxed answer is found
|
| 43 |
+
if "index of -1" in solution_text.lower() or "index: -1" in solution_text.lower():
|
| 44 |
+
return "-1"
|
| 45 |
+
|
| 46 |
+
# Look for paragraph indices
|
| 47 |
+
paragraph_pattern = r'paragraph[\s_]*(\d+)'
|
| 48 |
+
paragraph_matches = re.findall(paragraph_pattern, solution_text.lower())
|
| 49 |
+
if paragraph_matches:
|
| 50 |
+
return paragraph_matches[0]
|
| 51 |
+
|
| 52 |
+
# Check for direct indices
|
| 53 |
+
index_pattern = r'index[\s:]*(is|of)?[\s:]*(-?\d+)'
|
| 54 |
+
index_matches = re.findall(index_pattern, solution_text.lower())
|
| 55 |
+
if index_matches:
|
| 56 |
+
for match in index_matches:
|
| 57 |
+
return match[1]
|
| 58 |
+
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
def load_mistake_data(file_path):
|
| 62 |
+
"""Load data from a JSONL file."""
|
| 63 |
+
data = []
|
| 64 |
+
with open(file_path, 'r') as f:
|
| 65 |
+
for line in f:
|
| 66 |
+
try:
|
| 67 |
+
item = json.loads(line)
|
| 68 |
+
# Convert None to -1 for consistency
|
| 69 |
+
if item.get('mistake_index') is None:
|
| 70 |
+
item['mistake_index'] = -1
|
| 71 |
+
data.append(item)
|
| 72 |
+
except json.JSONDecodeError:
|
| 73 |
+
logger.warning(f"Skipping malformed JSON in {file_path}")
|
| 74 |
+
continue
|
| 75 |
+
return data
|
| 76 |
+
|
| 77 |
+
def prepare_input_mistake(template, input_d):
|
| 78 |
+
"""Prepare input for the mistake detection task."""
|
| 79 |
+
problem = input_d['input']
|
| 80 |
+
steps = input_d['steps']
|
| 81 |
+
|
| 82 |
+
# Format the steps with tags for paragraph identification
|
| 83 |
+
tagged_steps = ''
|
| 84 |
+
for sdx, step in enumerate(steps):
|
| 85 |
+
tagged_steps += f'<paragraph_{sdx}>\n{step}\n</paragraph_{sdx}>\n\n'
|
| 86 |
+
tagged_steps = tagged_steps.strip()
|
| 87 |
+
|
| 88 |
+
# Create the formatted prompt using the template
|
| 89 |
+
prompt = template.format(problem=problem, tagged_response=tagged_steps)
|
| 90 |
+
return prompt
|
| 91 |
+
|
| 92 |
+
def compute_reward(prediction, target):
|
| 93 |
+
"""
|
| 94 |
+
Compute the reward for a prediction compared to the target.
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
- 1.0 for exact match
|
| 98 |
+
- 0.5 for partial match (e.g., correctly identifying presence of mistake but wrong index)
|
| 99 |
+
- 0.0 for complete mismatch
|
| 100 |
+
"""
|
| 101 |
+
if prediction is None:
|
| 102 |
+
return 0.0
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
pred = int(prediction)
|
| 106 |
+
targ = int(target)
|
| 107 |
+
|
| 108 |
+
if pred == targ:
|
| 109 |
+
return 1.0
|
| 110 |
+
# Partial credit for correctly identifying whether there's a mistake at all
|
| 111 |
+
elif (pred == -1 and targ == -1) or (pred != -1 and targ != -1):
|
| 112 |
+
return 0.5
|
| 113 |
+
else:
|
| 114 |
+
return 0.0
|
| 115 |
+
except (ValueError, TypeError):
|
| 116 |
+
return 0.0
|
| 117 |
+
|
| 118 |
+
def preprocess_function(examples, tokenizer, template, max_length=2048):
|
| 119 |
+
"""Process examples for model training."""
|
| 120 |
+
# List to store processed inputs
|
| 121 |
+
# input_ids_list = []
|
| 122 |
+
# attention_mask_list = []
|
| 123 |
+
# labels_list = []
|
| 124 |
+
|
| 125 |
+
prompt_list = []
|
| 126 |
+
groundtruth_list = []
|
| 127 |
+
|
| 128 |
+
for example in examples["data"]:
|
| 129 |
+
# Prepare the prompt
|
| 130 |
+
prompt = prepare_input_mistake(template, example)
|
| 131 |
+
messages = [{"role": "user", "content": prompt}]
|
| 132 |
+
|
| 133 |
+
# Format using chat template
|
| 134 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 135 |
+
messages,
|
| 136 |
+
tokenize=False,
|
| 137 |
+
add_generation_prompt=True
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
prompt_list.append(prompt_text)
|
| 141 |
+
groundtruth_list.append(example["mistake_index"])
|
| 142 |
+
|
| 143 |
+
# # Tokenize
|
| 144 |
+
# encoded = tokenizer(
|
| 145 |
+
# prompt_text,
|
| 146 |
+
# max_length=max_length,
|
| 147 |
+
# padding="max_length",
|
| 148 |
+
# truncation=True,
|
| 149 |
+
# return_tensors="pt"
|
| 150 |
+
# )
|
| 151 |
+
|
| 152 |
+
# input_ids_list.append(encoded["input_ids"][0])
|
| 153 |
+
# attention_mask_list.append(encoded["attention_mask"][0])
|
| 154 |
+
# labels_list.append(encoded["input_ids"][0].clone())
|
| 155 |
+
|
| 156 |
+
# Create processed features
|
| 157 |
+
result = {
|
| 158 |
+
"prompt": prompt_list,
|
| 159 |
+
"ground_truth": groundtruth_list,
|
| 160 |
+
"original_example": examples["data"]
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
return result
|
| 164 |
+
|
| 165 |
+
class SaveBestModelCallback(TrainerCallback):
|
| 166 |
+
"""Callback to save best model based on average reward."""
|
| 167 |
+
def __init__(self):
|
| 168 |
+
self.best_reward = -float('inf')
|
| 169 |
+
|
| 170 |
+
def on_evaluate(self, args, state, control, metrics, **kwargs):
|
| 171 |
+
current_reward = metrics.get("eval_reward", 0)
|
| 172 |
+
if current_reward > self.best_reward:
|
| 173 |
+
self.best_reward = current_reward
|
| 174 |
+
# Save the best model
|
| 175 |
+
output_dir = os.path.join(args.output_dir, "best_model")
|
| 176 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 177 |
+
|
| 178 |
+
# Get the model from kwargs
|
| 179 |
+
trainer = kwargs.get("trainer")
|
| 180 |
+
if trainer:
|
| 181 |
+
trainer.save_model(output_dir)
|
| 182 |
+
logger.info(f"Saved best model with reward {current_reward}")
|
| 183 |
+
|
| 184 |
+
def reward_func(completions, ground_truth, **kwargs):
|
| 185 |
+
"""
|
| 186 |
+
Compute rewards by comparing model completions to ground truth.
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
completions: List of model completion strings
|
| 190 |
+
ground_truth: List of ground truth values
|
| 191 |
+
**kwargs: Additional arguments
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
torch.Tensor: Tensor of rewards
|
| 195 |
+
"""
|
| 196 |
+
rewards = []
|
| 197 |
+
|
| 198 |
+
for completion, target in zip(completions, ground_truth):
|
| 199 |
+
# Extract model's prediction from the completion
|
| 200 |
+
prediction = extract_answer(completion)
|
| 201 |
+
|
| 202 |
+
# Convert target if it's a tensor
|
| 203 |
+
if isinstance(target, torch.Tensor):
|
| 204 |
+
target = target.item()
|
| 205 |
+
|
| 206 |
+
# Compute reward
|
| 207 |
+
reward = compute_reward(prediction, target)
|
| 208 |
+
rewards.append(torch.tensor(reward))
|
| 209 |
+
|
| 210 |
+
return torch.stack(rewards)
|
| 211 |
+
|
| 212 |
+
@dataclass
|
| 213 |
+
class ScriptArguments:
|
| 214 |
+
"""Arguments for the GRPO training script."""
|
| 215 |
+
model_name_or_path: str = field(
|
| 216 |
+
default="deepseek-ai/deepseek-math-7b-instruct",
|
| 217 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
| 218 |
+
)
|
| 219 |
+
train_data_dir: str = field(
|
| 220 |
+
default="BIG-Bench-Mistake-Train",
|
| 221 |
+
metadata={"help": "Directory containing training data files"}
|
| 222 |
+
)
|
| 223 |
+
val_data_dir: str = field(
|
| 224 |
+
default="BIG-Bench-Mistake-Test",
|
| 225 |
+
metadata={"help": "Directory containing validation data files"}
|
| 226 |
+
)
|
| 227 |
+
template_path: str = field(
|
| 228 |
+
default="templates/critique_template.txt",
|
| 229 |
+
metadata={"help": "Path to prompt template file"}
|
| 230 |
+
)
|
| 231 |
+
output_dir: str = field(
|
| 232 |
+
default="results/grpo_finetune",
|
| 233 |
+
metadata={"help": "Output directory for model checkpoints"}
|
| 234 |
+
)
|
| 235 |
+
seed: int = field(
|
| 236 |
+
default=42,
|
| 237 |
+
metadata={"help": "Random seed for initialization"}
|
| 238 |
+
)
|
| 239 |
+
max_length: int = field(
|
| 240 |
+
default=2048,
|
| 241 |
+
metadata={"help": "Maximum sequence length for tokenizer"}
|
| 242 |
+
)
|
| 243 |
+
per_device_train_batch_size: int = field(
|
| 244 |
+
default=1,
|
| 245 |
+
metadata={"help": "Batch size per GPU for training"}
|
| 246 |
+
)
|
| 247 |
+
per_device_eval_batch_size: int = field(
|
| 248 |
+
default=1,
|
| 249 |
+
metadata={"help": "Batch size per GPU for evaluation"}
|
| 250 |
+
)
|
| 251 |
+
gradient_accumulation_steps: int = field(
|
| 252 |
+
default=8,
|
| 253 |
+
metadata={"help": "Number of updates steps to accumulate before backward pass"}
|
| 254 |
+
)
|
| 255 |
+
max_train_samples: Optional[int] = field(
|
| 256 |
+
default=None,
|
| 257 |
+
metadata={"help": "Max number of training samples to use (for debugging)"}
|
| 258 |
+
)
|
| 259 |
+
max_eval_samples: Optional[int] = field(
|
| 260 |
+
default=None,
|
| 261 |
+
metadata={"help": "Max number of evaluation samples to use (for debugging)"}
|
| 262 |
+
)
|
| 263 |
+
learning_rate: float = field(
|
| 264 |
+
default=5e-5,
|
| 265 |
+
metadata={"help": "Learning rate for training"}
|
| 266 |
+
)
|
| 267 |
+
num_train_epochs: int = field(
|
| 268 |
+
default=3,
|
| 269 |
+
metadata={"help": "Number of training epochs"}
|
| 270 |
+
)
|
| 271 |
+
logging_steps: int = field(
|
| 272 |
+
default=10,
|
| 273 |
+
metadata={"help": "Log every X updates steps"}
|
| 274 |
+
)
|
| 275 |
+
eval_steps: int = field(
|
| 276 |
+
default=100,
|
| 277 |
+
metadata={"help": "Run evaluation every X steps"}
|
| 278 |
+
)
|
| 279 |
+
save_steps: int = field(
|
| 280 |
+
default=500,
|
| 281 |
+
metadata={"help": "Save checkpoint every X steps"}
|
| 282 |
+
)
|
| 283 |
+
warmup_steps: int = field(
|
| 284 |
+
default=100,
|
| 285 |
+
metadata={"help": "Linear warmup over this many steps"}
|
| 286 |
+
)
|
| 287 |
+
use_lora: bool = field(
|
| 288 |
+
default=True,
|
| 289 |
+
metadata={"help": "Whether to use LoRA for parameter-efficient fine-tuning"}
|
| 290 |
+
)
|
| 291 |
+
lora_r: int = field(
|
| 292 |
+
default=16,
|
| 293 |
+
metadata={"help": "LoRA attention dimension"}
|
| 294 |
+
)
|
| 295 |
+
lora_alpha: int = field(
|
| 296 |
+
default=32,
|
| 297 |
+
metadata={"help": "LoRA alpha parameter"}
|
| 298 |
+
)
|
| 299 |
+
lora_dropout: float = field(
|
| 300 |
+
default=0.05,
|
| 301 |
+
metadata={"help": "LoRA dropout probability"}
|
| 302 |
+
)
|
| 303 |
+
load_in_8bit: bool = field(
|
| 304 |
+
default=False,
|
| 305 |
+
metadata={"help": "Whether to load model in 8-bit precision"}
|
| 306 |
+
)
|
| 307 |
+
load_in_4bit: bool = field(
|
| 308 |
+
default=True,
|
| 309 |
+
metadata={"help": "Whether to load model in 4-bit precision"}
|
| 310 |
+
)
|
| 311 |
+
use_group_rewards: bool = field(
|
| 312 |
+
default=True,
|
| 313 |
+
metadata={"help": "Whether to use group rewards in GRPO"}
|
| 314 |
+
)
|
| 315 |
+
gumbel_samples: int = field(
|
| 316 |
+
default=10,
|
| 317 |
+
metadata={"help": "Number of Gumbel samples for GRPO"}
|
| 318 |
+
)
|
| 319 |
+
critic_multiple: float = field(
|
| 320 |
+
default=0.5,
|
| 321 |
+
metadata={"help": "Critic loss multiplier"}
|
| 322 |
+
)
|
| 323 |
+
deepspeed: Optional[str] = field(
|
| 324 |
+
default=None,
|
| 325 |
+
metadata={"help": "Path to deepspeed config file for using deepspeed"}
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
def main():
|
| 329 |
+
parser = HfArgumentParser(ScriptArguments)
|
| 330 |
+
args = parser.parse_args_into_dataclasses()[0]
|
| 331 |
+
|
| 332 |
+
# Set random seed
|
| 333 |
+
set_seed(args.seed)
|
| 334 |
+
|
| 335 |
+
# Create output directory
|
| 336 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 337 |
+
|
| 338 |
+
# Load model and tokenizer
|
| 339 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
|
| 340 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 341 |
+
tokenizer.padding_side = "left"
|
| 342 |
+
|
| 343 |
+
logger.info(f"Loading model {args.model_name_or_path}...")
|
| 344 |
+
|
| 345 |
+
# Prepare model with quantization if needed
|
| 346 |
+
if args.load_in_8bit:
|
| 347 |
+
quantization_config = {"load_in_8bit": True}
|
| 348 |
+
elif args.load_in_4bit:
|
| 349 |
+
quantization_config = {"load_in_4bit": True,
|
| 350 |
+
"bnb_4bit_compute_dtype": torch.float16,
|
| 351 |
+
"bnb_4bit_quant_type": "nf4"}
|
| 352 |
+
else:
|
| 353 |
+
quantization_config = None
|
| 354 |
+
|
| 355 |
+
# For deepspeed compatibility, use torch_dtype=None for fp16/bf16 handling by deepspeed
|
| 356 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 357 |
+
args.model_name_or_path,
|
| 358 |
+
torch_dtype=None, # Let DeepSpeed handle the precision
|
| 359 |
+
device_map=None, # Don't use device_map with DeepSpeed
|
| 360 |
+
quantization_config=quantization_config
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# Apply LoRA if specified
|
| 364 |
+
if args.use_lora:
|
| 365 |
+
logger.info("Applying LoRA...")
|
| 366 |
+
if args.load_in_8bit or args.load_in_4bit:
|
| 367 |
+
model = prepare_model_for_kbit_training(model)
|
| 368 |
+
|
| 369 |
+
peft_config = LoraConfig(
|
| 370 |
+
r=args.lora_r,
|
| 371 |
+
lora_alpha=args.lora_alpha,
|
| 372 |
+
lora_dropout=args.lora_dropout,
|
| 373 |
+
bias="none",
|
| 374 |
+
task_type="CAUSAL_LM",
|
| 375 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
|
| 376 |
+
)
|
| 377 |
+
model = get_peft_model(model, peft_config)
|
| 378 |
+
model.print_trainable_parameters()
|
| 379 |
+
|
| 380 |
+
# Load template
|
| 381 |
+
with open(args.template_path, 'r') as f:
|
| 382 |
+
template = f.read().strip()
|
| 383 |
+
|
| 384 |
+
# Load training and validation data
|
| 385 |
+
train_files = glob.glob(os.path.join(args.train_data_dir, '*.jsonl'))
|
| 386 |
+
val_files = glob.glob(os.path.join(args.val_data_dir, '*.jsonl'))
|
| 387 |
+
|
| 388 |
+
# Use combined files if available
|
| 389 |
+
if os.path.exists(os.path.join(args.train_data_dir, 'combined_train.jsonl')):
|
| 390 |
+
train_files = [os.path.join(args.train_data_dir, 'combined_train.jsonl')]
|
| 391 |
+
|
| 392 |
+
if os.path.exists(os.path.join(args.val_data_dir, 'combined_test.jsonl')):
|
| 393 |
+
val_files = [os.path.join(args.val_data_dir, 'combined_test.jsonl')]
|
| 394 |
+
|
| 395 |
+
logger.info(f"Loading training data from {len(train_files)} files...")
|
| 396 |
+
train_data = []
|
| 397 |
+
for file in train_files:
|
| 398 |
+
train_data.extend(load_mistake_data(file))
|
| 399 |
+
|
| 400 |
+
logger.info(f"Loading validation data from {len(val_files)} files...")
|
| 401 |
+
val_data = []
|
| 402 |
+
for file in val_files:
|
| 403 |
+
val_data.extend(load_mistake_data(file))
|
| 404 |
+
|
| 405 |
+
# Limit number of samples if specified
|
| 406 |
+
if args.max_train_samples and len(train_data) > args.max_train_samples:
|
| 407 |
+
train_data = random.sample(train_data, args.max_train_samples)
|
| 408 |
+
|
| 409 |
+
if args.max_eval_samples and len(val_data) > args.max_eval_samples:
|
| 410 |
+
val_data = random.sample(val_data, args.max_eval_samples)
|
| 411 |
+
|
| 412 |
+
logger.info(f"Loaded {len(train_data)} training examples and {len(val_data)} validation examples")
|
| 413 |
+
|
| 414 |
+
# Create HF datasets
|
| 415 |
+
train_hf_dataset = HFDataset.from_dict({"data": train_data})
|
| 416 |
+
val_hf_dataset = HFDataset.from_dict({"data": val_data})
|
| 417 |
+
|
| 418 |
+
# Apply preprocessing function
|
| 419 |
+
train_tokenize_func = partial(preprocess_function, tokenizer=tokenizer, template=template, max_length=args.max_length)
|
| 420 |
+
val_tokenize_func = partial(preprocess_function, tokenizer=tokenizer, template=template, max_length=args.max_length)
|
| 421 |
+
|
| 422 |
+
# Process the datasets
|
| 423 |
+
train_dataset = train_hf_dataset.map(
|
| 424 |
+
train_tokenize_func,
|
| 425 |
+
batched=True,
|
| 426 |
+
remove_columns=["data"],
|
| 427 |
+
desc="Processing training dataset"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
val_dataset = val_hf_dataset.map(
|
| 431 |
+
val_tokenize_func,
|
| 432 |
+
batched=True,
|
| 433 |
+
remove_columns=["data"],
|
| 434 |
+
desc="Processing validation dataset"
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# Get reward function
|
| 438 |
+
reward_fn = reward_func
|
| 439 |
+
|
| 440 |
+
# Create training arguments with DeepSpeed compatibility
|
| 441 |
+
training_args = GRPOConfig(
|
| 442 |
+
output_dir=args.output_dir,
|
| 443 |
+
per_device_train_batch_size=args.per_device_train_batch_size,
|
| 444 |
+
per_device_eval_batch_size=args.per_device_train_batch_size,
|
| 445 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 446 |
+
learning_rate=args.learning_rate,
|
| 447 |
+
num_train_epochs=args.num_train_epochs,
|
| 448 |
+
logging_steps=args.logging_steps,
|
| 449 |
+
evaluation_strategy="no", # No evaluation during training
|
| 450 |
+
save_strategy="steps",
|
| 451 |
+
save_steps=args.save_steps,
|
| 452 |
+
warmup_steps=args.warmup_steps,
|
| 453 |
+
save_total_limit=3,
|
| 454 |
+
load_best_model_at_end=False, # Don't load best model as we're not evaluating
|
| 455 |
+
weight_decay=0.01,
|
| 456 |
+
# Let DeepSpeed handle mixed precision (set via config file)
|
| 457 |
+
bf16=True,
|
| 458 |
+
report_to="none",
|
| 459 |
+
max_grad_norm=1.0,
|
| 460 |
+
remove_unused_columns=False,
|
| 461 |
+
use_vllm=True,
|
| 462 |
+
# Generation config
|
| 463 |
+
temperature=0.6,
|
| 464 |
+
top_p=0.95,
|
| 465 |
+
num_generations=14,
|
| 466 |
+
# data processings
|
| 467 |
+
max_prompt_length=1024,
|
| 468 |
+
max_completion_length=1024,
|
| 469 |
+
log_completions=True,
|
| 470 |
+
do_eval=False, # Disable evaluation
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
# Create GRPO trainer without evaluation dataset and callback
|
| 474 |
+
trainer = GRPOTrainer(
|
| 475 |
+
model=model,
|
| 476 |
+
args=training_args,
|
| 477 |
+
train_dataset=train_dataset,
|
| 478 |
+
# Remove eval_dataset
|
| 479 |
+
reward_funcs=reward_fn,
|
| 480 |
+
# Remove SaveBestModelCallback
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
# Train the model
|
| 484 |
+
logger.info("Starting training with DeepSpeed...")
|
| 485 |
+
trainer.train()
|
| 486 |
+
|
| 487 |
+
# Save the final model - ensure this runs regardless of accelerator
|
| 488 |
+
trainer.save_model(os.path.join(args.output_dir, "final_model"))
|
| 489 |
+
logger.info(f"Training completed. Final model saved to {os.path.join(args.output_dir, 'final_model')}")
|
| 490 |
+
|
| 491 |
+
if __name__ == "__main__":
|
| 492 |
+
main()
|