Update README.md
Browse files
README.md
CHANGED
|
@@ -1,11 +1,18 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-nc-sa-4.0
|
| 3 |
widget:
|
| 4 |
-
- text:
|
|
|
|
| 5 |
tags:
|
| 6 |
- DNA
|
| 7 |
- biology
|
| 8 |
- genomics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
# Plant foundation DNA large language models
|
| 11 |
|
|
@@ -37,7 +44,7 @@ Here is a simple code for inference:
|
|
| 37 |
```python
|
| 38 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 39 |
|
| 40 |
-
model_name = 'plant-nucleotide-transformer-promoter'
|
| 41 |
# load model and tokenizer
|
| 42 |
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
|
@@ -59,4 +66,4 @@ Detailed training procedure can be found in our manuscript.
|
|
| 59 |
|
| 60 |
|
| 61 |
#### Hardware
|
| 62 |
-
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-nc-sa-4.0
|
| 3 |
widget:
|
| 4 |
+
- text: >-
|
| 5 |
+
AAAACATAATAATTTGCCGACTTACTCACCCTGTGATTAATCTATTTTCACTGTGTAGTAAGTAGAGAGTGTTACTTACTACAGTATCTATTTTTGTTTGGATGTTTGCCGTGGACAAGTGCTAACTGTCAAAACCCGTTTTGACCTTAAACCCAGCAATAATAATAATGTAAAACTCCATTGGGCAGTGCAACCTACTCCTCACATATTATATTATAATTCCTAAACCTTGATCAGTTAAATTAATAGCTCTGTTCCCTGTGGCTTTATATAAACACCATGGTTGTCAGCAGTTCAGCA
|
| 6 |
tags:
|
| 7 |
- DNA
|
| 8 |
- biology
|
| 9 |
- genomics
|
| 10 |
+
datasets:
|
| 11 |
+
- zhangtaolab/plant-multi-species-core-promoters
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
base_model:
|
| 15 |
+
- zhangtaolab/plant-nucleotide-transformer-BPE
|
| 16 |
---
|
| 17 |
# Plant foundation DNA large language models
|
| 18 |
|
|
|
|
| 44 |
```python
|
| 45 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 46 |
|
| 47 |
+
model_name = 'plant-nucleotide-transformer-BPE-promoter'
|
| 48 |
# load model and tokenizer
|
| 49 |
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
#### Hardware
|
| 69 |
+
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|