File size: 1,507 Bytes
f351dcf
 
 
6807b0b
 
 
 
 
f351dcf
 
ed12450
f351dcf
ed12450
 
 
 
 
 
 
f351dcf
 
 
f05147c
f351dcf
 
a6d0149
ed12450
 
 
 
de6f608
ed12450
 
de6f608
ed12450
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
base_model:
- MAGAer13/mplug-owl2-llama2-7b
language:
- en
license: mit
library_name: transformers
pipeline_tag: image-to-text
---

# DeQA-Score-LoRA-Mix3

DeQA-Score (
[project page](https://depictqa.github.io/deqa-score/) / 
[codes](https://github.com/zhiyuanyou/DeQA-Score) / 
[paper](https://arxiv.org/abs/2501.11561) 
) model weights LoRA fine-tuned on KonIQ, SPAQ, and KADID datasets. 

This work is under our [DepictQA project](https://depictqa.github.io/).

## Non-reference IQA Results (PLCC / SRCC)

| | Fine-tune | KonIQ     | SPAQ     | KADID    | PIPAL    | LIVE-Wild | AGIQA    | TID2013  | CSIQ     |
|--------------|-----------|-----------|----------|----------|----------|-----------|----------|----------|----------|
| Q-Align (Baseline) | Fully | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 |
| DeQA-Score (Ours) | LoRA | **0.956 / 0.944** | **0.939 / 0.935** | **0.953 / 0.951** | **0.481 / 0.481** | **0.903 / 0.890** | **0.806 / 0.754** | **0.851 / 0.821** | **0.900 / 0.860** |

If you find our work useful for your research and applications, please cite using the BibTeX:

```bibtex
@inproceedings{deqa_score,
  title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution},
  author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2025},
}
```