Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- __pycache__/configuration_intern_vit.cpython-310.pyc +0 -0
- __pycache__/configuration_internlm2.cpython-310.pyc +0 -0
- __pycache__/configuration_mask2former.cpython-310.pyc +0 -0
- __pycache__/configuration_phi3.cpython-310.pyc +0 -0
- __pycache__/configuration_sa2va_chat.cpython-310.pyc +0 -0
- __pycache__/constants.cpython-310.pyc +0 -0
- __pycache__/flash_attention.cpython-310.pyc +0 -0
- __pycache__/mask2former.cpython-310.pyc +0 -0
- __pycache__/modeling_intern_vit.cpython-310.pyc +0 -0
- __pycache__/modeling_internlm2.cpython-310.pyc +0 -0
- __pycache__/modeling_phi3.cpython-310.pyc +0 -0
- __pycache__/modeling_sa2va_chat.cpython-310.pyc +0 -0
- __pycache__/templates.cpython-310.pyc +0 -0
- added_tokens.json +140 -0
- chat_with_sa2va.py +140 -0
- config.json +2677 -0
- configuration_intern_vit.py +120 -0
- configuration_internlm2.py +150 -0
- configuration_phi3.py +211 -0
- configuration_sa2va_chat.py +122 -0
- constants.py +13 -0
- flash_attention.py +76 -0
- generation_config.json +4 -0
- mask2former.py +834 -0
- merges.txt +0 -0
- model.safetensors.index.json +0 -0
- modeling_intern_vit.py +364 -0
- modeling_internlm2.py +1429 -0
- modeling_phi3.py +1610 -0
- modeling_sa2va_chat.py +1100 -0
- sam2.py +0 -0
- special_tokens_map.json +40 -0
- templates.py +170 -0
- tokenization_internlm2.py +235 -0
- tokenization_internlm2_fast.py +211 -0
- tokenizer.json +3 -0
- tokenizer_config.json +1147 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
__pycache__/configuration_intern_vit.cpython-310.pyc
ADDED
|
Binary file (5.03 kB). View file
|
|
|
__pycache__/configuration_internlm2.cpython-310.pyc
ADDED
|
Binary file (5.54 kB). View file
|
|
|
__pycache__/configuration_mask2former.cpython-310.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
__pycache__/configuration_phi3.cpython-310.pyc
ADDED
|
Binary file (8.67 kB). View file
|
|
|
__pycache__/configuration_sa2va_chat.cpython-310.pyc
ADDED
|
Binary file (3.57 kB). View file
|
|
|
__pycache__/constants.cpython-310.pyc
ADDED
|
Binary file (555 Bytes). View file
|
|
|
__pycache__/flash_attention.cpython-310.pyc
ADDED
|
Binary file (2.71 kB). View file
|
|
|
__pycache__/mask2former.cpython-310.pyc
ADDED
|
Binary file (17.5 kB). View file
|
|
|
__pycache__/modeling_intern_vit.cpython-310.pyc
ADDED
|
Binary file (12.9 kB). View file
|
|
|
__pycache__/modeling_internlm2.cpython-310.pyc
ADDED
|
Binary file (42.9 kB). View file
|
|
|
__pycache__/modeling_phi3.cpython-310.pyc
ADDED
|
Binary file (44.2 kB). View file
|
|
|
__pycache__/modeling_sa2va_chat.cpython-310.pyc
ADDED
|
Binary file (27.1 kB). View file
|
|
|
__pycache__/templates.cpython-310.pyc
ADDED
|
Binary file (3.86 kB). View file
|
|
|
added_tokens.json
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</box>": 151673,
|
| 3 |
+
"</img>": 151666,
|
| 4 |
+
"</obj>": 151679,
|
| 5 |
+
"</p>": 151675,
|
| 6 |
+
"</quad>": 151669,
|
| 7 |
+
"</ref>": 151671,
|
| 8 |
+
"</tool_call>": 151658,
|
| 9 |
+
"<IMG_CONTEXT>": 151667,
|
| 10 |
+
"<OBJ_CONTEXT>": 151680,
|
| 11 |
+
"<box>": 151672,
|
| 12 |
+
"<img>": 151665,
|
| 13 |
+
"<obj>": 151678,
|
| 14 |
+
"<p>": 151674,
|
| 15 |
+
"<quad>": 151668,
|
| 16 |
+
"<ref>": 151670,
|
| 17 |
+
"<tool_call>": 151657,
|
| 18 |
+
"<|box_end|>": 151649,
|
| 19 |
+
"<|box_start|>": 151648,
|
| 20 |
+
"<|endoftext|>": 151643,
|
| 21 |
+
"<|file_sep|>": 151664,
|
| 22 |
+
"<|fim_middle|>": 151660,
|
| 23 |
+
"<|fim_pad|>": 151662,
|
| 24 |
+
"<|fim_prefix|>": 151659,
|
| 25 |
+
"<|fim_suffix|>": 151661,
|
| 26 |
+
"<|im_end|>": 151645,
|
| 27 |
+
"<|im_start|>": 151644,
|
| 28 |
+
"<|image_pad|>": 151655,
|
| 29 |
+
"<|object_ref_end|>": 151647,
|
| 30 |
+
"<|object_ref_start|>": 151646,
|
| 31 |
+
"<|quad_end|>": 151651,
|
| 32 |
+
"<|quad_start|>": 151650,
|
| 33 |
+
"<|repo_name|>": 151663,
|
| 34 |
+
"<|video_pad|>": 151656,
|
| 35 |
+
"<|vision_end|>": 151653,
|
| 36 |
+
"<|vision_pad|>": 151654,
|
| 37 |
+
"<|vision_start|>": 151652,
|
| 38 |
+
"[BG_CLS]": 151677,
|
| 39 |
+
"[CLS]": 151676,
|
| 40 |
+
"[SEG000]": 151681,
|
| 41 |
+
"[SEG001]": 151682,
|
| 42 |
+
"[SEG002]": 151683,
|
| 43 |
+
"[SEG003]": 151684,
|
| 44 |
+
"[SEG004]": 151685,
|
| 45 |
+
"[SEG005]": 151686,
|
| 46 |
+
"[SEG006]": 151687,
|
| 47 |
+
"[SEG007]": 151688,
|
| 48 |
+
"[SEG008]": 151689,
|
| 49 |
+
"[SEG009]": 151690,
|
| 50 |
+
"[SEG010]": 151691,
|
| 51 |
+
"[SEG011]": 151692,
|
| 52 |
+
"[SEG012]": 151693,
|
| 53 |
+
"[SEG013]": 151694,
|
| 54 |
+
"[SEG014]": 151695,
|
| 55 |
+
"[SEG015]": 151696,
|
| 56 |
+
"[SEG016]": 151697,
|
| 57 |
+
"[SEG017]": 151698,
|
| 58 |
+
"[SEG018]": 151699,
|
| 59 |
+
"[SEG019]": 151700,
|
| 60 |
+
"[SEG020]": 151701,
|
| 61 |
+
"[SEG021]": 151702,
|
| 62 |
+
"[SEG022]": 151703,
|
| 63 |
+
"[SEG023]": 151704,
|
| 64 |
+
"[SEG024]": 151705,
|
| 65 |
+
"[SEG025]": 151706,
|
| 66 |
+
"[SEG026]": 151707,
|
| 67 |
+
"[SEG027]": 151708,
|
| 68 |
+
"[SEG028]": 151709,
|
| 69 |
+
"[SEG029]": 151710,
|
| 70 |
+
"[SEG030]": 151711,
|
| 71 |
+
"[SEG031]": 151712,
|
| 72 |
+
"[SEG032]": 151713,
|
| 73 |
+
"[SEG033]": 151714,
|
| 74 |
+
"[SEG034]": 151715,
|
| 75 |
+
"[SEG035]": 151716,
|
| 76 |
+
"[SEG036]": 151717,
|
| 77 |
+
"[SEG037]": 151718,
|
| 78 |
+
"[SEG038]": 151719,
|
| 79 |
+
"[SEG039]": 151720,
|
| 80 |
+
"[SEG040]": 151721,
|
| 81 |
+
"[SEG041]": 151722,
|
| 82 |
+
"[SEG042]": 151723,
|
| 83 |
+
"[SEG043]": 151724,
|
| 84 |
+
"[SEG044]": 151725,
|
| 85 |
+
"[SEG045]": 151726,
|
| 86 |
+
"[SEG046]": 151727,
|
| 87 |
+
"[SEG047]": 151728,
|
| 88 |
+
"[SEG048]": 151729,
|
| 89 |
+
"[SEG049]": 151730,
|
| 90 |
+
"[SEG050]": 151731,
|
| 91 |
+
"[SEG051]": 151732,
|
| 92 |
+
"[SEG052]": 151733,
|
| 93 |
+
"[SEG053]": 151734,
|
| 94 |
+
"[SEG054]": 151735,
|
| 95 |
+
"[SEG055]": 151736,
|
| 96 |
+
"[SEG056]": 151737,
|
| 97 |
+
"[SEG057]": 151738,
|
| 98 |
+
"[SEG058]": 151739,
|
| 99 |
+
"[SEG059]": 151740,
|
| 100 |
+
"[SEG060]": 151741,
|
| 101 |
+
"[SEG061]": 151742,
|
| 102 |
+
"[SEG062]": 151743,
|
| 103 |
+
"[SEG063]": 151744,
|
| 104 |
+
"[SEG064]": 151745,
|
| 105 |
+
"[SEG065]": 151746,
|
| 106 |
+
"[SEG066]": 151747,
|
| 107 |
+
"[SEG067]": 151748,
|
| 108 |
+
"[SEG068]": 151749,
|
| 109 |
+
"[SEG069]": 151750,
|
| 110 |
+
"[SEG070]": 151751,
|
| 111 |
+
"[SEG071]": 151752,
|
| 112 |
+
"[SEG072]": 151753,
|
| 113 |
+
"[SEG073]": 151754,
|
| 114 |
+
"[SEG074]": 151755,
|
| 115 |
+
"[SEG075]": 151756,
|
| 116 |
+
"[SEG076]": 151757,
|
| 117 |
+
"[SEG077]": 151758,
|
| 118 |
+
"[SEG078]": 151759,
|
| 119 |
+
"[SEG079]": 151760,
|
| 120 |
+
"[SEG080]": 151761,
|
| 121 |
+
"[SEG081]": 151762,
|
| 122 |
+
"[SEG082]": 151763,
|
| 123 |
+
"[SEG083]": 151764,
|
| 124 |
+
"[SEG084]": 151765,
|
| 125 |
+
"[SEG085]": 151766,
|
| 126 |
+
"[SEG086]": 151767,
|
| 127 |
+
"[SEG087]": 151768,
|
| 128 |
+
"[SEG088]": 151769,
|
| 129 |
+
"[SEG089]": 151770,
|
| 130 |
+
"[SEG090]": 151771,
|
| 131 |
+
"[SEG091]": 151772,
|
| 132 |
+
"[SEG092]": 151773,
|
| 133 |
+
"[SEG093]": 151774,
|
| 134 |
+
"[SEG094]": 151775,
|
| 135 |
+
"[SEG095]": 151776,
|
| 136 |
+
"[SEG096]": 151777,
|
| 137 |
+
"[SEG097]": 151778,
|
| 138 |
+
"[SEG098]": 151779,
|
| 139 |
+
"[SEG099]": 151780
|
| 140 |
+
}
|
chat_with_sa2va.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
|
| 7 |
+
|
| 8 |
+
from types import MethodType
|
| 9 |
+
from detectron2.data import MetadataCatalog
|
| 10 |
+
from detectron2.utils.visualizer import ColorMode, Visualizer
|
| 11 |
+
|
| 12 |
+
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
|
| 13 |
+
from detectron2.data.detection_utils import read_image
|
| 14 |
+
from detectron2.utils.visualizer import GenericMask
|
| 15 |
+
import matplotlib.colors as mplc
|
| 16 |
+
def draw_instance_predictions_cache(self, labels, np_masks, jittering: bool = True):
|
| 17 |
+
"""
|
| 18 |
+
Draw instance-level prediction results on an image.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
predictions (Instances): the output of an instance detection/segmentation
|
| 22 |
+
model. Following fields will be used to draw:
|
| 23 |
+
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
|
| 24 |
+
jittering: if True, in color mode SEGMENTATION, randomly jitter the colors per class
|
| 25 |
+
to distinguish instances from the same class
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
output (VisImage): image object with visualizations.
|
| 29 |
+
"""
|
| 30 |
+
boxes = None
|
| 31 |
+
scores = None
|
| 32 |
+
classes = None
|
| 33 |
+
keypoints = None
|
| 34 |
+
|
| 35 |
+
masks = [GenericMask(x, self.output.height, self.output.width) for x in np_masks]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
| 39 |
+
colors = (
|
| 40 |
+
[self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
|
| 41 |
+
if jittering
|
| 42 |
+
else [
|
| 43 |
+
tuple(mplc.to_rgb([x / 255 for x in self.metadata.thing_colors[c]]))
|
| 44 |
+
for c in classes
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
alpha = 0.8
|
| 49 |
+
else:
|
| 50 |
+
colors = None
|
| 51 |
+
alpha = 0.5
|
| 52 |
+
|
| 53 |
+
self.overlay_instances(
|
| 54 |
+
masks=masks,
|
| 55 |
+
boxes=boxes,
|
| 56 |
+
labels=labels,
|
| 57 |
+
keypoints=keypoints,
|
| 58 |
+
assigned_colors=colors,
|
| 59 |
+
alpha=alpha,
|
| 60 |
+
)
|
| 61 |
+
return self.output
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def visualize(image_path, cat_masks, out_path, tags):
|
| 65 |
+
if tags is None:
|
| 66 |
+
left_tags = [f'{i}' for i in range(len(cat_masks))]
|
| 67 |
+
else:
|
| 68 |
+
left_tags = tags
|
| 69 |
+
|
| 70 |
+
unique_tags = list(set(left_tags))
|
| 71 |
+
text_prompt = ','.join(unique_tags)
|
| 72 |
+
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
|
| 73 |
+
metadata.thing_classes = unique_tags
|
| 74 |
+
metadata.stuff_classes = unique_tags
|
| 75 |
+
|
| 76 |
+
result_masks = cat_masks
|
| 77 |
+
input_image = read_image(image_path, format="BGR")
|
| 78 |
+
visualizer = Visualizer(input_image[:, :, ::-1], metadata, instance_mode=ColorMode.IMAGE)
|
| 79 |
+
visualizer.draw_instance_predictions = MethodType(draw_instance_predictions_cache, visualizer)
|
| 80 |
+
vis_output = visualizer.draw_instance_predictions(labels=left_tags, np_masks=result_masks)
|
| 81 |
+
output_image = vis_output.get_image()
|
| 82 |
+
output_image = Image.fromarray(output_image)
|
| 83 |
+
|
| 84 |
+
output_image.save(out_path)
|
| 85 |
+
|
| 86 |
+
path = "./work_dirs/hf_pano_vlm"
|
| 87 |
+
model = AutoModel.from_pretrained(
|
| 88 |
+
path,
|
| 89 |
+
torch_dtype=torch.bfloat16,
|
| 90 |
+
low_cpu_mem_usage=True,
|
| 91 |
+
use_flash_attn=True,
|
| 92 |
+
trust_remote_code=True).eval().cuda()
|
| 93 |
+
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 95 |
+
|
| 96 |
+
image_path = "./FRAME02_ORI.jpg"
|
| 97 |
+
image = Image.open(image_path)
|
| 98 |
+
width, height = image.size
|
| 99 |
+
|
| 100 |
+
from projects.llava_sam2.datasets.coco_category import COCO_CATEGORIES
|
| 101 |
+
coco_category_names = ""
|
| 102 |
+
for item in COCO_CATEGORIES:
|
| 103 |
+
class_name = item['name']
|
| 104 |
+
coco_category_names += f"<p>{class_name}</p> [CLS], "
|
| 105 |
+
coco_category_names = coco_category_names[:-2]
|
| 106 |
+
# question = f"<image>\nSegment from the class prompt: {coco_category_names}."
|
| 107 |
+
question = f"<image>\nSegment from the class prompt: <p>person</p> [CLS], <p>car</p> [CLS], <p>road</p> [CLS], <p>tree</p> [CLS], <p>building</p> [CLS], <p>ground</p> [CLS]."
|
| 108 |
+
|
| 109 |
+
m2f_processor = AutoImageProcessor.from_pretrained("./facebook/mask2former-swin-large-coco-panoptic", trust_remote_code=True,)
|
| 110 |
+
|
| 111 |
+
chat_outputs = model.predict_forward(text=question, image=image, tokenizer=tokenizer, m2f_processor=m2f_processor)
|
| 112 |
+
answer = chat_outputs['prediction']
|
| 113 |
+
masks = chat_outputs['prediction_masks']
|
| 114 |
+
|
| 115 |
+
m2f_outputs = chat_outputs['m2f_outputs']
|
| 116 |
+
|
| 117 |
+
label_id_to_text = m2f_outputs['label_id_to_text']
|
| 118 |
+
|
| 119 |
+
post_m2f_outputs = model.post_process_panoptic_segmentation(
|
| 120 |
+
m2f_outputs['class_queries_logits'],
|
| 121 |
+
m2f_outputs['masks_queries_logits'],
|
| 122 |
+
target_sizes=[(height, width)],
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
print(f"user: {question}")
|
| 126 |
+
print(f"assistant: {answer}")
|
| 127 |
+
|
| 128 |
+
segmentation = post_m2f_outputs[0]['segmentation']
|
| 129 |
+
segments_info = post_m2f_outputs[0]['segments_info']
|
| 130 |
+
pano_masks, pano_tags = [], []
|
| 131 |
+
for item in segments_info:
|
| 132 |
+
mask = segmentation == item['id']
|
| 133 |
+
pano_masks.append(mask.unsqueeze(0).cpu().numpy())
|
| 134 |
+
pano_tags.append(label_id_to_text[item['label_id']])
|
| 135 |
+
|
| 136 |
+
pano_masks = np.concatenate(pano_masks, axis=0)
|
| 137 |
+
|
| 138 |
+
visualize(image_path, pano_masks, "./visualize_test_4.jpg", pano_tags)
|
| 139 |
+
|
| 140 |
+
|
config.json
ADDED
|
@@ -0,0 +1,2677 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"_name_or_path": "./OpenGVLab/InternVL2_5-4B",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"Sa2VAChatModel"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_sa2va_chat.Sa2VAChatConfig",
|
| 9 |
+
"AutoModel": "modeling_sa2va_chat.Sa2VAChatModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_sa2va_chat.Sa2VAChatModel"
|
| 11 |
+
},
|
| 12 |
+
"downsample_ratio": 0.5,
|
| 13 |
+
"dynamic_image_size": true,
|
| 14 |
+
"force_image_size": 448,
|
| 15 |
+
"hidden_size": 2048,
|
| 16 |
+
"llm_config": {
|
| 17 |
+
"_attn_implementation_autoset": false,
|
| 18 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
| 19 |
+
"add_cross_attention": false,
|
| 20 |
+
"architectures": [
|
| 21 |
+
"Qwen2ForCausalLM"
|
| 22 |
+
],
|
| 23 |
+
"attention_dropout": 0.0,
|
| 24 |
+
"bad_words_ids": null,
|
| 25 |
+
"begin_suppress_tokens": null,
|
| 26 |
+
"bos_token_id": 151643,
|
| 27 |
+
"chunk_size_feed_forward": 0,
|
| 28 |
+
"cross_attention_hidden_size": null,
|
| 29 |
+
"decoder_start_token_id": null,
|
| 30 |
+
"diversity_penalty": 0.0,
|
| 31 |
+
"do_sample": false,
|
| 32 |
+
"early_stopping": false,
|
| 33 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 34 |
+
"eos_token_id": 151645,
|
| 35 |
+
"exponential_decay_length_penalty": null,
|
| 36 |
+
"finetuning_task": null,
|
| 37 |
+
"forced_bos_token_id": null,
|
| 38 |
+
"forced_eos_token_id": null,
|
| 39 |
+
"hidden_act": "silu",
|
| 40 |
+
"hidden_size": 2048,
|
| 41 |
+
"id2label": {
|
| 42 |
+
"0": "LABEL_0",
|
| 43 |
+
"1": "LABEL_1"
|
| 44 |
+
},
|
| 45 |
+
"initializer_range": 0.02,
|
| 46 |
+
"intermediate_size": 11008,
|
| 47 |
+
"is_decoder": false,
|
| 48 |
+
"is_encoder_decoder": false,
|
| 49 |
+
"label2id": {
|
| 50 |
+
"LABEL_0": 0,
|
| 51 |
+
"LABEL_1": 1
|
| 52 |
+
},
|
| 53 |
+
"length_penalty": 1.0,
|
| 54 |
+
"max_length": 20,
|
| 55 |
+
"max_position_embeddings": 32768,
|
| 56 |
+
"max_window_layers": 70,
|
| 57 |
+
"min_length": 0,
|
| 58 |
+
"model_type": "qwen2",
|
| 59 |
+
"no_repeat_ngram_size": 0,
|
| 60 |
+
"num_attention_heads": 16,
|
| 61 |
+
"num_beam_groups": 1,
|
| 62 |
+
"num_beams": 1,
|
| 63 |
+
"num_hidden_layers": 36,
|
| 64 |
+
"num_key_value_heads": 2,
|
| 65 |
+
"num_return_sequences": 1,
|
| 66 |
+
"output_attentions": false,
|
| 67 |
+
"output_hidden_states": false,
|
| 68 |
+
"output_scores": false,
|
| 69 |
+
"pad_token_id": null,
|
| 70 |
+
"prefix": null,
|
| 71 |
+
"problem_type": null,
|
| 72 |
+
"pruned_heads": {},
|
| 73 |
+
"remove_invalid_values": false,
|
| 74 |
+
"repetition_penalty": 1.0,
|
| 75 |
+
"return_dict": true,
|
| 76 |
+
"return_dict_in_generate": false,
|
| 77 |
+
"rms_norm_eps": 1e-06,
|
| 78 |
+
"rope_scaling": null,
|
| 79 |
+
"rope_theta": 1000000.0,
|
| 80 |
+
"sep_token_id": null,
|
| 81 |
+
"sliding_window": null,
|
| 82 |
+
"suppress_tokens": null,
|
| 83 |
+
"task_specific_params": null,
|
| 84 |
+
"temperature": 1.0,
|
| 85 |
+
"tf_legacy_loss": false,
|
| 86 |
+
"tie_encoder_decoder": false,
|
| 87 |
+
"tie_word_embeddings": false,
|
| 88 |
+
"tokenizer_class": null,
|
| 89 |
+
"top_k": 50,
|
| 90 |
+
"top_p": 1.0,
|
| 91 |
+
"torch_dtype": "bfloat16",
|
| 92 |
+
"torchscript": false,
|
| 93 |
+
"transformers_version": "4.47.0",
|
| 94 |
+
"typical_p": 1.0,
|
| 95 |
+
"use_bfloat16": true,
|
| 96 |
+
"use_cache": true,
|
| 97 |
+
"use_sliding_window": false,
|
| 98 |
+
"vocab_size": 151781
|
| 99 |
+
},
|
| 100 |
+
"m2f_config": {
|
| 101 |
+
"_attn_implementation_autoset": true,
|
| 102 |
+
"_name_or_path": "",
|
| 103 |
+
"activation_function": "relu",
|
| 104 |
+
"add_cross_attention": false,
|
| 105 |
+
"architectures": [
|
| 106 |
+
"Mask2FormerForUniversalSegmentation"
|
| 107 |
+
],
|
| 108 |
+
"backbone": null,
|
| 109 |
+
"backbone_config": {
|
| 110 |
+
"_attn_implementation_autoset": false,
|
| 111 |
+
"_name_or_path": "",
|
| 112 |
+
"add_cross_attention": false,
|
| 113 |
+
"architectures": [
|
| 114 |
+
"SwinForImageClassification"
|
| 115 |
+
],
|
| 116 |
+
"attention_probs_dropout_prob": 0.0,
|
| 117 |
+
"bad_words_ids": null,
|
| 118 |
+
"begin_suppress_tokens": null,
|
| 119 |
+
"bos_token_id": null,
|
| 120 |
+
"chunk_size_feed_forward": 0,
|
| 121 |
+
"cross_attention_hidden_size": null,
|
| 122 |
+
"decoder_start_token_id": null,
|
| 123 |
+
"depths": [
|
| 124 |
+
2,
|
| 125 |
+
2,
|
| 126 |
+
18,
|
| 127 |
+
2
|
| 128 |
+
],
|
| 129 |
+
"diversity_penalty": 0.0,
|
| 130 |
+
"do_sample": false,
|
| 131 |
+
"drop_path_rate": 0.3,
|
| 132 |
+
"early_stopping": false,
|
| 133 |
+
"embed_dim": 192,
|
| 134 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 135 |
+
"encoder_stride": 32,
|
| 136 |
+
"eos_token_id": null,
|
| 137 |
+
"exponential_decay_length_penalty": null,
|
| 138 |
+
"finetuning_task": null,
|
| 139 |
+
"forced_bos_token_id": null,
|
| 140 |
+
"forced_eos_token_id": null,
|
| 141 |
+
"hidden_act": "gelu",
|
| 142 |
+
"hidden_dropout_prob": 0.0,
|
| 143 |
+
"hidden_size": 1536,
|
| 144 |
+
"id2label": {
|
| 145 |
+
"0": "tench, Tinca tinca",
|
| 146 |
+
"1": "goldfish, Carassius auratus",
|
| 147 |
+
"2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
|
| 148 |
+
"3": "tiger shark, Galeocerdo cuvieri",
|
| 149 |
+
"4": "hammerhead, hammerhead shark",
|
| 150 |
+
"5": "electric ray, crampfish, numbfish, torpedo",
|
| 151 |
+
"6": "stingray",
|
| 152 |
+
"7": "cock",
|
| 153 |
+
"8": "hen",
|
| 154 |
+
"9": "ostrich, Struthio camelus",
|
| 155 |
+
"10": "brambling, Fringilla montifringilla",
|
| 156 |
+
"11": "goldfinch, Carduelis carduelis",
|
| 157 |
+
"12": "house finch, linnet, Carpodacus mexicanus",
|
| 158 |
+
"13": "junco, snowbird",
|
| 159 |
+
"14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
|
| 160 |
+
"15": "robin, American robin, Turdus migratorius",
|
| 161 |
+
"16": "bulbul",
|
| 162 |
+
"17": "jay",
|
| 163 |
+
"18": "magpie",
|
| 164 |
+
"19": "chickadee",
|
| 165 |
+
"20": "water ouzel, dipper",
|
| 166 |
+
"21": "kite",
|
| 167 |
+
"22": "bald eagle, American eagle, Haliaeetus leucocephalus",
|
| 168 |
+
"23": "vulture",
|
| 169 |
+
"24": "great grey owl, great gray owl, Strix nebulosa",
|
| 170 |
+
"25": "European fire salamander, Salamandra salamandra",
|
| 171 |
+
"26": "common newt, Triturus vulgaris",
|
| 172 |
+
"27": "eft",
|
| 173 |
+
"28": "spotted salamander, Ambystoma maculatum",
|
| 174 |
+
"29": "axolotl, mud puppy, Ambystoma mexicanum",
|
| 175 |
+
"30": "bullfrog, Rana catesbeiana",
|
| 176 |
+
"31": "tree frog, tree-frog",
|
| 177 |
+
"32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
|
| 178 |
+
"33": "loggerhead, loggerhead turtle, Caretta caretta",
|
| 179 |
+
"34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
|
| 180 |
+
"35": "mud turtle",
|
| 181 |
+
"36": "terrapin",
|
| 182 |
+
"37": "box turtle, box tortoise",
|
| 183 |
+
"38": "banded gecko",
|
| 184 |
+
"39": "common iguana, iguana, Iguana iguana",
|
| 185 |
+
"40": "American chameleon, anole, Anolis carolinensis",
|
| 186 |
+
"41": "whiptail, whiptail lizard",
|
| 187 |
+
"42": "agama",
|
| 188 |
+
"43": "frilled lizard, Chlamydosaurus kingi",
|
| 189 |
+
"44": "alligator lizard",
|
| 190 |
+
"45": "Gila monster, Heloderma suspectum",
|
| 191 |
+
"46": "green lizard, Lacerta viridis",
|
| 192 |
+
"47": "African chameleon, Chamaeleo chamaeleon",
|
| 193 |
+
"48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
|
| 194 |
+
"49": "African crocodile, Nile crocodile, Crocodylus niloticus",
|
| 195 |
+
"50": "American alligator, Alligator mississipiensis",
|
| 196 |
+
"51": "triceratops",
|
| 197 |
+
"52": "thunder snake, worm snake, Carphophis amoenus",
|
| 198 |
+
"53": "ringneck snake, ring-necked snake, ring snake",
|
| 199 |
+
"54": "hognose snake, puff adder, sand viper",
|
| 200 |
+
"55": "green snake, grass snake",
|
| 201 |
+
"56": "king snake, kingsnake",
|
| 202 |
+
"57": "garter snake, grass snake",
|
| 203 |
+
"58": "water snake",
|
| 204 |
+
"59": "vine snake",
|
| 205 |
+
"60": "night snake, Hypsiglena torquata",
|
| 206 |
+
"61": "boa constrictor, Constrictor constrictor",
|
| 207 |
+
"62": "rock python, rock snake, Python sebae",
|
| 208 |
+
"63": "Indian cobra, Naja naja",
|
| 209 |
+
"64": "green mamba",
|
| 210 |
+
"65": "sea snake",
|
| 211 |
+
"66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
|
| 212 |
+
"67": "diamondback, diamondback rattlesnake, Crotalus adamanteus",
|
| 213 |
+
"68": "sidewinder, horned rattlesnake, Crotalus cerastes",
|
| 214 |
+
"69": "trilobite",
|
| 215 |
+
"70": "harvestman, daddy longlegs, Phalangium opilio",
|
| 216 |
+
"71": "scorpion",
|
| 217 |
+
"72": "black and gold garden spider, Argiope aurantia",
|
| 218 |
+
"73": "barn spider, Araneus cavaticus",
|
| 219 |
+
"74": "garden spider, Aranea diademata",
|
| 220 |
+
"75": "black widow, Latrodectus mactans",
|
| 221 |
+
"76": "tarantula",
|
| 222 |
+
"77": "wolf spider, hunting spider",
|
| 223 |
+
"78": "tick",
|
| 224 |
+
"79": "centipede",
|
| 225 |
+
"80": "black grouse",
|
| 226 |
+
"81": "ptarmigan",
|
| 227 |
+
"82": "ruffed grouse, partridge, Bonasa umbellus",
|
| 228 |
+
"83": "prairie chicken, prairie grouse, prairie fowl",
|
| 229 |
+
"84": "peacock",
|
| 230 |
+
"85": "quail",
|
| 231 |
+
"86": "partridge",
|
| 232 |
+
"87": "African grey, African gray, Psittacus erithacus",
|
| 233 |
+
"88": "macaw",
|
| 234 |
+
"89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
|
| 235 |
+
"90": "lorikeet",
|
| 236 |
+
"91": "coucal",
|
| 237 |
+
"92": "bee eater",
|
| 238 |
+
"93": "hornbill",
|
| 239 |
+
"94": "hummingbird",
|
| 240 |
+
"95": "jacamar",
|
| 241 |
+
"96": "toucan",
|
| 242 |
+
"97": "drake",
|
| 243 |
+
"98": "red-breasted merganser, Mergus serrator",
|
| 244 |
+
"99": "goose",
|
| 245 |
+
"100": "black swan, Cygnus atratus",
|
| 246 |
+
"101": "tusker",
|
| 247 |
+
"102": "echidna, spiny anteater, anteater",
|
| 248 |
+
"103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
|
| 249 |
+
"104": "wallaby, brush kangaroo",
|
| 250 |
+
"105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
|
| 251 |
+
"106": "wombat",
|
| 252 |
+
"107": "jellyfish",
|
| 253 |
+
"108": "sea anemone, anemone",
|
| 254 |
+
"109": "brain coral",
|
| 255 |
+
"110": "flatworm, platyhelminth",
|
| 256 |
+
"111": "nematode, nematode worm, roundworm",
|
| 257 |
+
"112": "conch",
|
| 258 |
+
"113": "snail",
|
| 259 |
+
"114": "slug",
|
| 260 |
+
"115": "sea slug, nudibranch",
|
| 261 |
+
"116": "chiton, coat-of-mail shell, sea cradle, polyplacophore",
|
| 262 |
+
"117": "chambered nautilus, pearly nautilus, nautilus",
|
| 263 |
+
"118": "Dungeness crab, Cancer magister",
|
| 264 |
+
"119": "rock crab, Cancer irroratus",
|
| 265 |
+
"120": "fiddler crab",
|
| 266 |
+
"121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
|
| 267 |
+
"122": "American lobster, Northern lobster, Maine lobster, Homarus americanus",
|
| 268 |
+
"123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
|
| 269 |
+
"124": "crayfish, crawfish, crawdad, crawdaddy",
|
| 270 |
+
"125": "hermit crab",
|
| 271 |
+
"126": "isopod",
|
| 272 |
+
"127": "white stork, Ciconia ciconia",
|
| 273 |
+
"128": "black stork, Ciconia nigra",
|
| 274 |
+
"129": "spoonbill",
|
| 275 |
+
"130": "flamingo",
|
| 276 |
+
"131": "little blue heron, Egretta caerulea",
|
| 277 |
+
"132": "American egret, great white heron, Egretta albus",
|
| 278 |
+
"133": "bittern",
|
| 279 |
+
"134": "crane",
|
| 280 |
+
"135": "limpkin, Aramus pictus",
|
| 281 |
+
"136": "European gallinule, Porphyrio porphyrio",
|
| 282 |
+
"137": "American coot, marsh hen, mud hen, water hen, Fulica americana",
|
| 283 |
+
"138": "bustard",
|
| 284 |
+
"139": "ruddy turnstone, Arenaria interpres",
|
| 285 |
+
"140": "red-backed sandpiper, dunlin, Erolia alpina",
|
| 286 |
+
"141": "redshank, Tringa totanus",
|
| 287 |
+
"142": "dowitcher",
|
| 288 |
+
"143": "oystercatcher, oyster catcher",
|
| 289 |
+
"144": "pelican",
|
| 290 |
+
"145": "king penguin, Aptenodytes patagonica",
|
| 291 |
+
"146": "albatross, mollymawk",
|
| 292 |
+
"147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
|
| 293 |
+
"148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
|
| 294 |
+
"149": "dugong, Dugong dugon",
|
| 295 |
+
"150": "sea lion",
|
| 296 |
+
"151": "Chihuahua",
|
| 297 |
+
"152": "Japanese spaniel",
|
| 298 |
+
"153": "Maltese dog, Maltese terrier, Maltese",
|
| 299 |
+
"154": "Pekinese, Pekingese, Peke",
|
| 300 |
+
"155": "Shih-Tzu",
|
| 301 |
+
"156": "Blenheim spaniel",
|
| 302 |
+
"157": "papillon",
|
| 303 |
+
"158": "toy terrier",
|
| 304 |
+
"159": "Rhodesian ridgeback",
|
| 305 |
+
"160": "Afghan hound, Afghan",
|
| 306 |
+
"161": "basset, basset hound",
|
| 307 |
+
"162": "beagle",
|
| 308 |
+
"163": "bloodhound, sleuthhound",
|
| 309 |
+
"164": "bluetick",
|
| 310 |
+
"165": "black-and-tan coonhound",
|
| 311 |
+
"166": "Walker hound, Walker foxhound",
|
| 312 |
+
"167": "English foxhound",
|
| 313 |
+
"168": "redbone",
|
| 314 |
+
"169": "borzoi, Russian wolfhound",
|
| 315 |
+
"170": "Irish wolfhound",
|
| 316 |
+
"171": "Italian greyhound",
|
| 317 |
+
"172": "whippet",
|
| 318 |
+
"173": "Ibizan hound, Ibizan Podenco",
|
| 319 |
+
"174": "Norwegian elkhound, elkhound",
|
| 320 |
+
"175": "otterhound, otter hound",
|
| 321 |
+
"176": "Saluki, gazelle hound",
|
| 322 |
+
"177": "Scottish deerhound, deerhound",
|
| 323 |
+
"178": "Weimaraner",
|
| 324 |
+
"179": "Staffordshire bullterrier, Staffordshire bull terrier",
|
| 325 |
+
"180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
|
| 326 |
+
"181": "Bedlington terrier",
|
| 327 |
+
"182": "Border terrier",
|
| 328 |
+
"183": "Kerry blue terrier",
|
| 329 |
+
"184": "Irish terrier",
|
| 330 |
+
"185": "Norfolk terrier",
|
| 331 |
+
"186": "Norwich terrier",
|
| 332 |
+
"187": "Yorkshire terrier",
|
| 333 |
+
"188": "wire-haired fox terrier",
|
| 334 |
+
"189": "Lakeland terrier",
|
| 335 |
+
"190": "Sealyham terrier, Sealyham",
|
| 336 |
+
"191": "Airedale, Airedale terrier",
|
| 337 |
+
"192": "cairn, cairn terrier",
|
| 338 |
+
"193": "Australian terrier",
|
| 339 |
+
"194": "Dandie Dinmont, Dandie Dinmont terrier",
|
| 340 |
+
"195": "Boston bull, Boston terrier",
|
| 341 |
+
"196": "miniature schnauzer",
|
| 342 |
+
"197": "giant schnauzer",
|
| 343 |
+
"198": "standard schnauzer",
|
| 344 |
+
"199": "Scotch terrier, Scottish terrier, Scottie",
|
| 345 |
+
"200": "Tibetan terrier, chrysanthemum dog",
|
| 346 |
+
"201": "silky terrier, Sydney silky",
|
| 347 |
+
"202": "soft-coated wheaten terrier",
|
| 348 |
+
"203": "West Highland white terrier",
|
| 349 |
+
"204": "Lhasa, Lhasa apso",
|
| 350 |
+
"205": "flat-coated retriever",
|
| 351 |
+
"206": "curly-coated retriever",
|
| 352 |
+
"207": "golden retriever",
|
| 353 |
+
"208": "Labrador retriever",
|
| 354 |
+
"209": "Chesapeake Bay retriever",
|
| 355 |
+
"210": "German short-haired pointer",
|
| 356 |
+
"211": "vizsla, Hungarian pointer",
|
| 357 |
+
"212": "English setter",
|
| 358 |
+
"213": "Irish setter, red setter",
|
| 359 |
+
"214": "Gordon setter",
|
| 360 |
+
"215": "Brittany spaniel",
|
| 361 |
+
"216": "clumber, clumber spaniel",
|
| 362 |
+
"217": "English springer, English springer spaniel",
|
| 363 |
+
"218": "Welsh springer spaniel",
|
| 364 |
+
"219": "cocker spaniel, English cocker spaniel, cocker",
|
| 365 |
+
"220": "Sussex spaniel",
|
| 366 |
+
"221": "Irish water spaniel",
|
| 367 |
+
"222": "kuvasz",
|
| 368 |
+
"223": "schipperke",
|
| 369 |
+
"224": "groenendael",
|
| 370 |
+
"225": "malinois",
|
| 371 |
+
"226": "briard",
|
| 372 |
+
"227": "kelpie",
|
| 373 |
+
"228": "komondor",
|
| 374 |
+
"229": "Old English sheepdog, bobtail",
|
| 375 |
+
"230": "Shetland sheepdog, Shetland sheep dog, Shetland",
|
| 376 |
+
"231": "collie",
|
| 377 |
+
"232": "Border collie",
|
| 378 |
+
"233": "Bouvier des Flandres, Bouviers des Flandres",
|
| 379 |
+
"234": "Rottweiler",
|
| 380 |
+
"235": "German shepherd, German shepherd dog, German police dog, alsatian",
|
| 381 |
+
"236": "Doberman, Doberman pinscher",
|
| 382 |
+
"237": "miniature pinscher",
|
| 383 |
+
"238": "Greater Swiss Mountain dog",
|
| 384 |
+
"239": "Bernese mountain dog",
|
| 385 |
+
"240": "Appenzeller",
|
| 386 |
+
"241": "EntleBucher",
|
| 387 |
+
"242": "boxer",
|
| 388 |
+
"243": "bull mastiff",
|
| 389 |
+
"244": "Tibetan mastiff",
|
| 390 |
+
"245": "French bulldog",
|
| 391 |
+
"246": "Great Dane",
|
| 392 |
+
"247": "Saint Bernard, St Bernard",
|
| 393 |
+
"248": "Eskimo dog, husky",
|
| 394 |
+
"249": "malamute, malemute, Alaskan malamute",
|
| 395 |
+
"250": "Siberian husky",
|
| 396 |
+
"251": "dalmatian, coach dog, carriage dog",
|
| 397 |
+
"252": "affenpinscher, monkey pinscher, monkey dog",
|
| 398 |
+
"253": "basenji",
|
| 399 |
+
"254": "pug, pug-dog",
|
| 400 |
+
"255": "Leonberg",
|
| 401 |
+
"256": "Newfoundland, Newfoundland dog",
|
| 402 |
+
"257": "Great Pyrenees",
|
| 403 |
+
"258": "Samoyed, Samoyede",
|
| 404 |
+
"259": "Pomeranian",
|
| 405 |
+
"260": "chow, chow chow",
|
| 406 |
+
"261": "keeshond",
|
| 407 |
+
"262": "Brabancon griffon",
|
| 408 |
+
"263": "Pembroke, Pembroke Welsh corgi",
|
| 409 |
+
"264": "Cardigan, Cardigan Welsh corgi",
|
| 410 |
+
"265": "toy poodle",
|
| 411 |
+
"266": "miniature poodle",
|
| 412 |
+
"267": "standard poodle",
|
| 413 |
+
"268": "Mexican hairless",
|
| 414 |
+
"269": "timber wolf, grey wolf, gray wolf, Canis lupus",
|
| 415 |
+
"270": "white wolf, Arctic wolf, Canis lupus tundrarum",
|
| 416 |
+
"271": "red wolf, maned wolf, Canis rufus, Canis niger",
|
| 417 |
+
"272": "coyote, prairie wolf, brush wolf, Canis latrans",
|
| 418 |
+
"273": "dingo, warrigal, warragal, Canis dingo",
|
| 419 |
+
"274": "dhole, Cuon alpinus",
|
| 420 |
+
"275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
|
| 421 |
+
"276": "hyena, hyaena",
|
| 422 |
+
"277": "red fox, Vulpes vulpes",
|
| 423 |
+
"278": "kit fox, Vulpes macrotis",
|
| 424 |
+
"279": "Arctic fox, white fox, Alopex lagopus",
|
| 425 |
+
"280": "grey fox, gray fox, Urocyon cinereoargenteus",
|
| 426 |
+
"281": "tabby, tabby cat",
|
| 427 |
+
"282": "tiger cat",
|
| 428 |
+
"283": "Persian cat",
|
| 429 |
+
"284": "Siamese cat, Siamese",
|
| 430 |
+
"285": "Egyptian cat",
|
| 431 |
+
"286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
|
| 432 |
+
"287": "lynx, catamount",
|
| 433 |
+
"288": "leopard, Panthera pardus",
|
| 434 |
+
"289": "snow leopard, ounce, Panthera uncia",
|
| 435 |
+
"290": "jaguar, panther, Panthera onca, Felis onca",
|
| 436 |
+
"291": "lion, king of beasts, Panthera leo",
|
| 437 |
+
"292": "tiger, Panthera tigris",
|
| 438 |
+
"293": "cheetah, chetah, Acinonyx jubatus",
|
| 439 |
+
"294": "brown bear, bruin, Ursus arctos",
|
| 440 |
+
"295": "American black bear, black bear, Ursus americanus, Euarctos americanus",
|
| 441 |
+
"296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
|
| 442 |
+
"297": "sloth bear, Melursus ursinus, Ursus ursinus",
|
| 443 |
+
"298": "mongoose",
|
| 444 |
+
"299": "meerkat, mierkat",
|
| 445 |
+
"300": "tiger beetle",
|
| 446 |
+
"301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
|
| 447 |
+
"302": "ground beetle, carabid beetle",
|
| 448 |
+
"303": "long-horned beetle, longicorn, longicorn beetle",
|
| 449 |
+
"304": "leaf beetle, chrysomelid",
|
| 450 |
+
"305": "dung beetle",
|
| 451 |
+
"306": "rhinoceros beetle",
|
| 452 |
+
"307": "weevil",
|
| 453 |
+
"308": "fly",
|
| 454 |
+
"309": "bee",
|
| 455 |
+
"310": "ant, emmet, pismire",
|
| 456 |
+
"311": "grasshopper, hopper",
|
| 457 |
+
"312": "cricket",
|
| 458 |
+
"313": "walking stick, walkingstick, stick insect",
|
| 459 |
+
"314": "cockroach, roach",
|
| 460 |
+
"315": "mantis, mantid",
|
| 461 |
+
"316": "cicada, cicala",
|
| 462 |
+
"317": "leafhopper",
|
| 463 |
+
"318": "lacewing, lacewing fly",
|
| 464 |
+
"319": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
|
| 465 |
+
"320": "damselfly",
|
| 466 |
+
"321": "admiral",
|
| 467 |
+
"322": "ringlet, ringlet butterfly",
|
| 468 |
+
"323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
|
| 469 |
+
"324": "cabbage butterfly",
|
| 470 |
+
"325": "sulphur butterfly, sulfur butterfly",
|
| 471 |
+
"326": "lycaenid, lycaenid butterfly",
|
| 472 |
+
"327": "starfish, sea star",
|
| 473 |
+
"328": "sea urchin",
|
| 474 |
+
"329": "sea cucumber, holothurian",
|
| 475 |
+
"330": "wood rabbit, cottontail, cottontail rabbit",
|
| 476 |
+
"331": "hare",
|
| 477 |
+
"332": "Angora, Angora rabbit",
|
| 478 |
+
"333": "hamster",
|
| 479 |
+
"334": "porcupine, hedgehog",
|
| 480 |
+
"335": "fox squirrel, eastern fox squirrel, Sciurus niger",
|
| 481 |
+
"336": "marmot",
|
| 482 |
+
"337": "beaver",
|
| 483 |
+
"338": "guinea pig, Cavia cobaya",
|
| 484 |
+
"339": "sorrel",
|
| 485 |
+
"340": "zebra",
|
| 486 |
+
"341": "hog, pig, grunter, squealer, Sus scrofa",
|
| 487 |
+
"342": "wild boar, boar, Sus scrofa",
|
| 488 |
+
"343": "warthog",
|
| 489 |
+
"344": "hippopotamus, hippo, river horse, Hippopotamus amphibius",
|
| 490 |
+
"345": "ox",
|
| 491 |
+
"346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
|
| 492 |
+
"347": "bison",
|
| 493 |
+
"348": "ram, tup",
|
| 494 |
+
"349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
|
| 495 |
+
"350": "ibex, Capra ibex",
|
| 496 |
+
"351": "hartebeest",
|
| 497 |
+
"352": "impala, Aepyceros melampus",
|
| 498 |
+
"353": "gazelle",
|
| 499 |
+
"354": "Arabian camel, dromedary, Camelus dromedarius",
|
| 500 |
+
"355": "llama",
|
| 501 |
+
"356": "weasel",
|
| 502 |
+
"357": "mink",
|
| 503 |
+
"358": "polecat, fitch, foulmart, foumart, Mustela putorius",
|
| 504 |
+
"359": "black-footed ferret, ferret, Mustela nigripes",
|
| 505 |
+
"360": "otter",
|
| 506 |
+
"361": "skunk, polecat, wood pussy",
|
| 507 |
+
"362": "badger",
|
| 508 |
+
"363": "armadillo",
|
| 509 |
+
"364": "three-toed sloth, ai, Bradypus tridactylus",
|
| 510 |
+
"365": "orangutan, orang, orangutang, Pongo pygmaeus",
|
| 511 |
+
"366": "gorilla, Gorilla gorilla",
|
| 512 |
+
"367": "chimpanzee, chimp, Pan troglodytes",
|
| 513 |
+
"368": "gibbon, Hylobates lar",
|
| 514 |
+
"369": "siamang, Hylobates syndactylus, Symphalangus syndactylus",
|
| 515 |
+
"370": "guenon, guenon monkey",
|
| 516 |
+
"371": "patas, hussar monkey, Erythrocebus patas",
|
| 517 |
+
"372": "baboon",
|
| 518 |
+
"373": "macaque",
|
| 519 |
+
"374": "langur",
|
| 520 |
+
"375": "colobus, colobus monkey",
|
| 521 |
+
"376": "proboscis monkey, Nasalis larvatus",
|
| 522 |
+
"377": "marmoset",
|
| 523 |
+
"378": "capuchin, ringtail, Cebus capucinus",
|
| 524 |
+
"379": "howler monkey, howler",
|
| 525 |
+
"380": "titi, titi monkey",
|
| 526 |
+
"381": "spider monkey, Ateles geoffroyi",
|
| 527 |
+
"382": "squirrel monkey, Saimiri sciureus",
|
| 528 |
+
"383": "Madagascar cat, ring-tailed lemur, Lemur catta",
|
| 529 |
+
"384": "indri, indris, Indri indri, Indri brevicaudatus",
|
| 530 |
+
"385": "Indian elephant, Elephas maximus",
|
| 531 |
+
"386": "African elephant, Loxodonta africana",
|
| 532 |
+
"387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
|
| 533 |
+
"388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
|
| 534 |
+
"389": "barracouta, snoek",
|
| 535 |
+
"390": "eel",
|
| 536 |
+
"391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
|
| 537 |
+
"392": "rock beauty, Holocanthus tricolor",
|
| 538 |
+
"393": "anemone fish",
|
| 539 |
+
"394": "sturgeon",
|
| 540 |
+
"395": "gar, garfish, garpike, billfish, Lepisosteus osseus",
|
| 541 |
+
"396": "lionfish",
|
| 542 |
+
"397": "puffer, pufferfish, blowfish, globefish",
|
| 543 |
+
"398": "abacus",
|
| 544 |
+
"399": "abaya",
|
| 545 |
+
"400": "academic gown, academic robe, judge's robe",
|
| 546 |
+
"401": "accordion, piano accordion, squeeze box",
|
| 547 |
+
"402": "acoustic guitar",
|
| 548 |
+
"403": "aircraft carrier, carrier, flattop, attack aircraft carrier",
|
| 549 |
+
"404": "airliner",
|
| 550 |
+
"405": "airship, dirigible",
|
| 551 |
+
"406": "altar",
|
| 552 |
+
"407": "ambulance",
|
| 553 |
+
"408": "amphibian, amphibious vehicle",
|
| 554 |
+
"409": "analog clock",
|
| 555 |
+
"410": "apiary, bee house",
|
| 556 |
+
"411": "apron",
|
| 557 |
+
"412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
|
| 558 |
+
"413": "assault rifle, assault gun",
|
| 559 |
+
"414": "backpack, back pack, knapsack, packsack, rucksack, haversack",
|
| 560 |
+
"415": "bakery, bakeshop, bakehouse",
|
| 561 |
+
"416": "balance beam, beam",
|
| 562 |
+
"417": "balloon",
|
| 563 |
+
"418": "ballpoint, ballpoint pen, ballpen, Biro",
|
| 564 |
+
"419": "Band Aid",
|
| 565 |
+
"420": "banjo",
|
| 566 |
+
"421": "bannister, banister, balustrade, balusters, handrail",
|
| 567 |
+
"422": "barbell",
|
| 568 |
+
"423": "barber chair",
|
| 569 |
+
"424": "barbershop",
|
| 570 |
+
"425": "barn",
|
| 571 |
+
"426": "barometer",
|
| 572 |
+
"427": "barrel, cask",
|
| 573 |
+
"428": "barrow, garden cart, lawn cart, wheelbarrow",
|
| 574 |
+
"429": "baseball",
|
| 575 |
+
"430": "basketball",
|
| 576 |
+
"431": "bassinet",
|
| 577 |
+
"432": "bassoon",
|
| 578 |
+
"433": "bathing cap, swimming cap",
|
| 579 |
+
"434": "bath towel",
|
| 580 |
+
"435": "bathtub, bathing tub, bath, tub",
|
| 581 |
+
"436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
|
| 582 |
+
"437": "beacon, lighthouse, beacon light, pharos",
|
| 583 |
+
"438": "beaker",
|
| 584 |
+
"439": "bearskin, busby, shako",
|
| 585 |
+
"440": "beer bottle",
|
| 586 |
+
"441": "beer glass",
|
| 587 |
+
"442": "bell cote, bell cot",
|
| 588 |
+
"443": "bib",
|
| 589 |
+
"444": "bicycle-built-for-two, tandem bicycle, tandem",
|
| 590 |
+
"445": "bikini, two-piece",
|
| 591 |
+
"446": "binder, ring-binder",
|
| 592 |
+
"447": "binoculars, field glasses, opera glasses",
|
| 593 |
+
"448": "birdhouse",
|
| 594 |
+
"449": "boathouse",
|
| 595 |
+
"450": "bobsled, bobsleigh, bob",
|
| 596 |
+
"451": "bolo tie, bolo, bola tie, bola",
|
| 597 |
+
"452": "bonnet, poke bonnet",
|
| 598 |
+
"453": "bookcase",
|
| 599 |
+
"454": "bookshop, bookstore, bookstall",
|
| 600 |
+
"455": "bottlecap",
|
| 601 |
+
"456": "bow",
|
| 602 |
+
"457": "bow tie, bow-tie, bowtie",
|
| 603 |
+
"458": "brass, memorial tablet, plaque",
|
| 604 |
+
"459": "brassiere, bra, bandeau",
|
| 605 |
+
"460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
|
| 606 |
+
"461": "breastplate, aegis, egis",
|
| 607 |
+
"462": "broom",
|
| 608 |
+
"463": "bucket, pail",
|
| 609 |
+
"464": "buckle",
|
| 610 |
+
"465": "bulletproof vest",
|
| 611 |
+
"466": "bullet train, bullet",
|
| 612 |
+
"467": "butcher shop, meat market",
|
| 613 |
+
"468": "cab, hack, taxi, taxicab",
|
| 614 |
+
"469": "caldron, cauldron",
|
| 615 |
+
"470": "candle, taper, wax light",
|
| 616 |
+
"471": "cannon",
|
| 617 |
+
"472": "canoe",
|
| 618 |
+
"473": "can opener, tin opener",
|
| 619 |
+
"474": "cardigan",
|
| 620 |
+
"475": "car mirror",
|
| 621 |
+
"476": "carousel, carrousel, merry-go-round, roundabout, whirligig",
|
| 622 |
+
"477": "carpenter's kit, tool kit",
|
| 623 |
+
"478": "carton",
|
| 624 |
+
"479": "car wheel",
|
| 625 |
+
"480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
|
| 626 |
+
"481": "cassette",
|
| 627 |
+
"482": "cassette player",
|
| 628 |
+
"483": "castle",
|
| 629 |
+
"484": "catamaran",
|
| 630 |
+
"485": "CD player",
|
| 631 |
+
"486": "cello, violoncello",
|
| 632 |
+
"487": "cellular telephone, cellular phone, cellphone, cell, mobile phone",
|
| 633 |
+
"488": "chain",
|
| 634 |
+
"489": "chainlink fence",
|
| 635 |
+
"490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
|
| 636 |
+
"491": "chain saw, chainsaw",
|
| 637 |
+
"492": "chest",
|
| 638 |
+
"493": "chiffonier, commode",
|
| 639 |
+
"494": "chime, bell, gong",
|
| 640 |
+
"495": "china cabinet, china closet",
|
| 641 |
+
"496": "Christmas stocking",
|
| 642 |
+
"497": "church, church building",
|
| 643 |
+
"498": "cinema, movie theater, movie theatre, movie house, picture palace",
|
| 644 |
+
"499": "cleaver, meat cleaver, chopper",
|
| 645 |
+
"500": "cliff dwelling",
|
| 646 |
+
"501": "cloak",
|
| 647 |
+
"502": "clog, geta, patten, sabot",
|
| 648 |
+
"503": "cocktail shaker",
|
| 649 |
+
"504": "coffee mug",
|
| 650 |
+
"505": "coffeepot",
|
| 651 |
+
"506": "coil, spiral, volute, whorl, helix",
|
| 652 |
+
"507": "combination lock",
|
| 653 |
+
"508": "computer keyboard, keypad",
|
| 654 |
+
"509": "confectionery, confectionary, candy store",
|
| 655 |
+
"510": "container ship, containership, container vessel",
|
| 656 |
+
"511": "convertible",
|
| 657 |
+
"512": "corkscrew, bottle screw",
|
| 658 |
+
"513": "cornet, horn, trumpet, trump",
|
| 659 |
+
"514": "cowboy boot",
|
| 660 |
+
"515": "cowboy hat, ten-gallon hat",
|
| 661 |
+
"516": "cradle",
|
| 662 |
+
"517": "crane",
|
| 663 |
+
"518": "crash helmet",
|
| 664 |
+
"519": "crate",
|
| 665 |
+
"520": "crib, cot",
|
| 666 |
+
"521": "Crock Pot",
|
| 667 |
+
"522": "croquet ball",
|
| 668 |
+
"523": "crutch",
|
| 669 |
+
"524": "cuirass",
|
| 670 |
+
"525": "dam, dike, dyke",
|
| 671 |
+
"526": "desk",
|
| 672 |
+
"527": "desktop computer",
|
| 673 |
+
"528": "dial telephone, dial phone",
|
| 674 |
+
"529": "diaper, nappy, napkin",
|
| 675 |
+
"530": "digital clock",
|
| 676 |
+
"531": "digital watch",
|
| 677 |
+
"532": "dining table, board",
|
| 678 |
+
"533": "dishrag, dishcloth",
|
| 679 |
+
"534": "dishwasher, dish washer, dishwashing machine",
|
| 680 |
+
"535": "disk brake, disc brake",
|
| 681 |
+
"536": "dock, dockage, docking facility",
|
| 682 |
+
"537": "dogsled, dog sled, dog sleigh",
|
| 683 |
+
"538": "dome",
|
| 684 |
+
"539": "doormat, welcome mat",
|
| 685 |
+
"540": "drilling platform, offshore rig",
|
| 686 |
+
"541": "drum, membranophone, tympan",
|
| 687 |
+
"542": "drumstick",
|
| 688 |
+
"543": "dumbbell",
|
| 689 |
+
"544": "Dutch oven",
|
| 690 |
+
"545": "electric fan, blower",
|
| 691 |
+
"546": "electric guitar",
|
| 692 |
+
"547": "electric locomotive",
|
| 693 |
+
"548": "entertainment center",
|
| 694 |
+
"549": "envelope",
|
| 695 |
+
"550": "espresso maker",
|
| 696 |
+
"551": "face powder",
|
| 697 |
+
"552": "feather boa, boa",
|
| 698 |
+
"553": "file, file cabinet, filing cabinet",
|
| 699 |
+
"554": "fireboat",
|
| 700 |
+
"555": "fire engine, fire truck",
|
| 701 |
+
"556": "fire screen, fireguard",
|
| 702 |
+
"557": "flagpole, flagstaff",
|
| 703 |
+
"558": "flute, transverse flute",
|
| 704 |
+
"559": "folding chair",
|
| 705 |
+
"560": "football helmet",
|
| 706 |
+
"561": "forklift",
|
| 707 |
+
"562": "fountain",
|
| 708 |
+
"563": "fountain pen",
|
| 709 |
+
"564": "four-poster",
|
| 710 |
+
"565": "freight car",
|
| 711 |
+
"566": "French horn, horn",
|
| 712 |
+
"567": "frying pan, frypan, skillet",
|
| 713 |
+
"568": "fur coat",
|
| 714 |
+
"569": "garbage truck, dustcart",
|
| 715 |
+
"570": "gasmask, respirator, gas helmet",
|
| 716 |
+
"571": "gas pump, gasoline pump, petrol pump, island dispenser",
|
| 717 |
+
"572": "goblet",
|
| 718 |
+
"573": "go-kart",
|
| 719 |
+
"574": "golf ball",
|
| 720 |
+
"575": "golfcart, golf cart",
|
| 721 |
+
"576": "gondola",
|
| 722 |
+
"577": "gong, tam-tam",
|
| 723 |
+
"578": "gown",
|
| 724 |
+
"579": "grand piano, grand",
|
| 725 |
+
"580": "greenhouse, nursery, glasshouse",
|
| 726 |
+
"581": "grille, radiator grille",
|
| 727 |
+
"582": "grocery store, grocery, food market, market",
|
| 728 |
+
"583": "guillotine",
|
| 729 |
+
"584": "hair slide",
|
| 730 |
+
"585": "hair spray",
|
| 731 |
+
"586": "half track",
|
| 732 |
+
"587": "hammer",
|
| 733 |
+
"588": "hamper",
|
| 734 |
+
"589": "hand blower, blow dryer, blow drier, hair dryer, hair drier",
|
| 735 |
+
"590": "hand-held computer, hand-held microcomputer",
|
| 736 |
+
"591": "handkerchief, hankie, hanky, hankey",
|
| 737 |
+
"592": "hard disc, hard disk, fixed disk",
|
| 738 |
+
"593": "harmonica, mouth organ, harp, mouth harp",
|
| 739 |
+
"594": "harp",
|
| 740 |
+
"595": "harvester, reaper",
|
| 741 |
+
"596": "hatchet",
|
| 742 |
+
"597": "holster",
|
| 743 |
+
"598": "home theater, home theatre",
|
| 744 |
+
"599": "honeycomb",
|
| 745 |
+
"600": "hook, claw",
|
| 746 |
+
"601": "hoopskirt, crinoline",
|
| 747 |
+
"602": "horizontal bar, high bar",
|
| 748 |
+
"603": "horse cart, horse-cart",
|
| 749 |
+
"604": "hourglass",
|
| 750 |
+
"605": "iPod",
|
| 751 |
+
"606": "iron, smoothing iron",
|
| 752 |
+
"607": "jack-o'-lantern",
|
| 753 |
+
"608": "jean, blue jean, denim",
|
| 754 |
+
"609": "jeep, landrover",
|
| 755 |
+
"610": "jersey, T-shirt, tee shirt",
|
| 756 |
+
"611": "jigsaw puzzle",
|
| 757 |
+
"612": "jinrikisha, ricksha, rickshaw",
|
| 758 |
+
"613": "joystick",
|
| 759 |
+
"614": "kimono",
|
| 760 |
+
"615": "knee pad",
|
| 761 |
+
"616": "knot",
|
| 762 |
+
"617": "lab coat, laboratory coat",
|
| 763 |
+
"618": "ladle",
|
| 764 |
+
"619": "lampshade, lamp shade",
|
| 765 |
+
"620": "laptop, laptop computer",
|
| 766 |
+
"621": "lawn mower, mower",
|
| 767 |
+
"622": "lens cap, lens cover",
|
| 768 |
+
"623": "letter opener, paper knife, paperknife",
|
| 769 |
+
"624": "library",
|
| 770 |
+
"625": "lifeboat",
|
| 771 |
+
"626": "lighter, light, igniter, ignitor",
|
| 772 |
+
"627": "limousine, limo",
|
| 773 |
+
"628": "liner, ocean liner",
|
| 774 |
+
"629": "lipstick, lip rouge",
|
| 775 |
+
"630": "Loafer",
|
| 776 |
+
"631": "lotion",
|
| 777 |
+
"632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
|
| 778 |
+
"633": "loupe, jeweler's loupe",
|
| 779 |
+
"634": "lumbermill, sawmill",
|
| 780 |
+
"635": "magnetic compass",
|
| 781 |
+
"636": "mailbag, postbag",
|
| 782 |
+
"637": "mailbox, letter box",
|
| 783 |
+
"638": "maillot",
|
| 784 |
+
"639": "maillot, tank suit",
|
| 785 |
+
"640": "manhole cover",
|
| 786 |
+
"641": "maraca",
|
| 787 |
+
"642": "marimba, xylophone",
|
| 788 |
+
"643": "mask",
|
| 789 |
+
"644": "matchstick",
|
| 790 |
+
"645": "maypole",
|
| 791 |
+
"646": "maze, labyrinth",
|
| 792 |
+
"647": "measuring cup",
|
| 793 |
+
"648": "medicine chest, medicine cabinet",
|
| 794 |
+
"649": "megalith, megalithic structure",
|
| 795 |
+
"650": "microphone, mike",
|
| 796 |
+
"651": "microwave, microwave oven",
|
| 797 |
+
"652": "military uniform",
|
| 798 |
+
"653": "milk can",
|
| 799 |
+
"654": "minibus",
|
| 800 |
+
"655": "miniskirt, mini",
|
| 801 |
+
"656": "minivan",
|
| 802 |
+
"657": "missile",
|
| 803 |
+
"658": "mitten",
|
| 804 |
+
"659": "mixing bowl",
|
| 805 |
+
"660": "mobile home, manufactured home",
|
| 806 |
+
"661": "Model T",
|
| 807 |
+
"662": "modem",
|
| 808 |
+
"663": "monastery",
|
| 809 |
+
"664": "monitor",
|
| 810 |
+
"665": "moped",
|
| 811 |
+
"666": "mortar",
|
| 812 |
+
"667": "mortarboard",
|
| 813 |
+
"668": "mosque",
|
| 814 |
+
"669": "mosquito net",
|
| 815 |
+
"670": "motor scooter, scooter",
|
| 816 |
+
"671": "mountain bike, all-terrain bike, off-roader",
|
| 817 |
+
"672": "mountain tent",
|
| 818 |
+
"673": "mouse, computer mouse",
|
| 819 |
+
"674": "mousetrap",
|
| 820 |
+
"675": "moving van",
|
| 821 |
+
"676": "muzzle",
|
| 822 |
+
"677": "nail",
|
| 823 |
+
"678": "neck brace",
|
| 824 |
+
"679": "necklace",
|
| 825 |
+
"680": "nipple",
|
| 826 |
+
"681": "notebook, notebook computer",
|
| 827 |
+
"682": "obelisk",
|
| 828 |
+
"683": "oboe, hautboy, hautbois",
|
| 829 |
+
"684": "ocarina, sweet potato",
|
| 830 |
+
"685": "odometer, hodometer, mileometer, milometer",
|
| 831 |
+
"686": "oil filter",
|
| 832 |
+
"687": "organ, pipe organ",
|
| 833 |
+
"688": "oscilloscope, scope, cathode-ray oscilloscope, CRO",
|
| 834 |
+
"689": "overskirt",
|
| 835 |
+
"690": "oxcart",
|
| 836 |
+
"691": "oxygen mask",
|
| 837 |
+
"692": "packet",
|
| 838 |
+
"693": "paddle, boat paddle",
|
| 839 |
+
"694": "paddlewheel, paddle wheel",
|
| 840 |
+
"695": "padlock",
|
| 841 |
+
"696": "paintbrush",
|
| 842 |
+
"697": "pajama, pyjama, pj's, jammies",
|
| 843 |
+
"698": "palace",
|
| 844 |
+
"699": "panpipe, pandean pipe, syrinx",
|
| 845 |
+
"700": "paper towel",
|
| 846 |
+
"701": "parachute, chute",
|
| 847 |
+
"702": "parallel bars, bars",
|
| 848 |
+
"703": "park bench",
|
| 849 |
+
"704": "parking meter",
|
| 850 |
+
"705": "passenger car, coach, carriage",
|
| 851 |
+
"706": "patio, terrace",
|
| 852 |
+
"707": "pay-phone, pay-station",
|
| 853 |
+
"708": "pedestal, plinth, footstall",
|
| 854 |
+
"709": "pencil box, pencil case",
|
| 855 |
+
"710": "pencil sharpener",
|
| 856 |
+
"711": "perfume, essence",
|
| 857 |
+
"712": "Petri dish",
|
| 858 |
+
"713": "photocopier",
|
| 859 |
+
"714": "pick, plectrum, plectron",
|
| 860 |
+
"715": "pickelhaube",
|
| 861 |
+
"716": "picket fence, paling",
|
| 862 |
+
"717": "pickup, pickup truck",
|
| 863 |
+
"718": "pier",
|
| 864 |
+
"719": "piggy bank, penny bank",
|
| 865 |
+
"720": "pill bottle",
|
| 866 |
+
"721": "pillow",
|
| 867 |
+
"722": "ping-pong ball",
|
| 868 |
+
"723": "pinwheel",
|
| 869 |
+
"724": "pirate, pirate ship",
|
| 870 |
+
"725": "pitcher, ewer",
|
| 871 |
+
"726": "plane, carpenter's plane, woodworking plane",
|
| 872 |
+
"727": "planetarium",
|
| 873 |
+
"728": "plastic bag",
|
| 874 |
+
"729": "plate rack",
|
| 875 |
+
"730": "plow, plough",
|
| 876 |
+
"731": "plunger, plumber's helper",
|
| 877 |
+
"732": "Polaroid camera, Polaroid Land camera",
|
| 878 |
+
"733": "pole",
|
| 879 |
+
"734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
|
| 880 |
+
"735": "poncho",
|
| 881 |
+
"736": "pool table, billiard table, snooker table",
|
| 882 |
+
"737": "pop bottle, soda bottle",
|
| 883 |
+
"738": "pot, flowerpot",
|
| 884 |
+
"739": "potter's wheel",
|
| 885 |
+
"740": "power drill",
|
| 886 |
+
"741": "prayer rug, prayer mat",
|
| 887 |
+
"742": "printer",
|
| 888 |
+
"743": "prison, prison house",
|
| 889 |
+
"744": "projectile, missile",
|
| 890 |
+
"745": "projector",
|
| 891 |
+
"746": "puck, hockey puck",
|
| 892 |
+
"747": "punching bag, punch bag, punching ball, punchball",
|
| 893 |
+
"748": "purse",
|
| 894 |
+
"749": "quill, quill pen",
|
| 895 |
+
"750": "quilt, comforter, comfort, puff",
|
| 896 |
+
"751": "racer, race car, racing car",
|
| 897 |
+
"752": "racket, racquet",
|
| 898 |
+
"753": "radiator",
|
| 899 |
+
"754": "radio, wireless",
|
| 900 |
+
"755": "radio telescope, radio reflector",
|
| 901 |
+
"756": "rain barrel",
|
| 902 |
+
"757": "recreational vehicle, RV, R.V.",
|
| 903 |
+
"758": "reel",
|
| 904 |
+
"759": "reflex camera",
|
| 905 |
+
"760": "refrigerator, icebox",
|
| 906 |
+
"761": "remote control, remote",
|
| 907 |
+
"762": "restaurant, eating house, eating place, eatery",
|
| 908 |
+
"763": "revolver, six-gun, six-shooter",
|
| 909 |
+
"764": "rifle",
|
| 910 |
+
"765": "rocking chair, rocker",
|
| 911 |
+
"766": "rotisserie",
|
| 912 |
+
"767": "rubber eraser, rubber, pencil eraser",
|
| 913 |
+
"768": "rugby ball",
|
| 914 |
+
"769": "rule, ruler",
|
| 915 |
+
"770": "running shoe",
|
| 916 |
+
"771": "safe",
|
| 917 |
+
"772": "safety pin",
|
| 918 |
+
"773": "saltshaker, salt shaker",
|
| 919 |
+
"774": "sandal",
|
| 920 |
+
"775": "sarong",
|
| 921 |
+
"776": "sax, saxophone",
|
| 922 |
+
"777": "scabbard",
|
| 923 |
+
"778": "scale, weighing machine",
|
| 924 |
+
"779": "school bus",
|
| 925 |
+
"780": "schooner",
|
| 926 |
+
"781": "scoreboard",
|
| 927 |
+
"782": "screen, CRT screen",
|
| 928 |
+
"783": "screw",
|
| 929 |
+
"784": "screwdriver",
|
| 930 |
+
"785": "seat belt, seatbelt",
|
| 931 |
+
"786": "sewing machine",
|
| 932 |
+
"787": "shield, buckler",
|
| 933 |
+
"788": "shoe shop, shoe-shop, shoe store",
|
| 934 |
+
"789": "shoji",
|
| 935 |
+
"790": "shopping basket",
|
| 936 |
+
"791": "shopping cart",
|
| 937 |
+
"792": "shovel",
|
| 938 |
+
"793": "shower cap",
|
| 939 |
+
"794": "shower curtain",
|
| 940 |
+
"795": "ski",
|
| 941 |
+
"796": "ski mask",
|
| 942 |
+
"797": "sleeping bag",
|
| 943 |
+
"798": "slide rule, slipstick",
|
| 944 |
+
"799": "sliding door",
|
| 945 |
+
"800": "slot, one-armed bandit",
|
| 946 |
+
"801": "snorkel",
|
| 947 |
+
"802": "snowmobile",
|
| 948 |
+
"803": "snowplow, snowplough",
|
| 949 |
+
"804": "soap dispenser",
|
| 950 |
+
"805": "soccer ball",
|
| 951 |
+
"806": "sock",
|
| 952 |
+
"807": "solar dish, solar collector, solar furnace",
|
| 953 |
+
"808": "sombrero",
|
| 954 |
+
"809": "soup bowl",
|
| 955 |
+
"810": "space bar",
|
| 956 |
+
"811": "space heater",
|
| 957 |
+
"812": "space shuttle",
|
| 958 |
+
"813": "spatula",
|
| 959 |
+
"814": "speedboat",
|
| 960 |
+
"815": "spider web, spider's web",
|
| 961 |
+
"816": "spindle",
|
| 962 |
+
"817": "sports car, sport car",
|
| 963 |
+
"818": "spotlight, spot",
|
| 964 |
+
"819": "stage",
|
| 965 |
+
"820": "steam locomotive",
|
| 966 |
+
"821": "steel arch bridge",
|
| 967 |
+
"822": "steel drum",
|
| 968 |
+
"823": "stethoscope",
|
| 969 |
+
"824": "stole",
|
| 970 |
+
"825": "stone wall",
|
| 971 |
+
"826": "stopwatch, stop watch",
|
| 972 |
+
"827": "stove",
|
| 973 |
+
"828": "strainer",
|
| 974 |
+
"829": "streetcar, tram, tramcar, trolley, trolley car",
|
| 975 |
+
"830": "stretcher",
|
| 976 |
+
"831": "studio couch, day bed",
|
| 977 |
+
"832": "stupa, tope",
|
| 978 |
+
"833": "submarine, pigboat, sub, U-boat",
|
| 979 |
+
"834": "suit, suit of clothes",
|
| 980 |
+
"835": "sundial",
|
| 981 |
+
"836": "sunglass",
|
| 982 |
+
"837": "sunglasses, dark glasses, shades",
|
| 983 |
+
"838": "sunscreen, sunblock, sun blocker",
|
| 984 |
+
"839": "suspension bridge",
|
| 985 |
+
"840": "swab, swob, mop",
|
| 986 |
+
"841": "sweatshirt",
|
| 987 |
+
"842": "swimming trunks, bathing trunks",
|
| 988 |
+
"843": "swing",
|
| 989 |
+
"844": "switch, electric switch, electrical switch",
|
| 990 |
+
"845": "syringe",
|
| 991 |
+
"846": "table lamp",
|
| 992 |
+
"847": "tank, army tank, armored combat vehicle, armoured combat vehicle",
|
| 993 |
+
"848": "tape player",
|
| 994 |
+
"849": "teapot",
|
| 995 |
+
"850": "teddy, teddy bear",
|
| 996 |
+
"851": "television, television system",
|
| 997 |
+
"852": "tennis ball",
|
| 998 |
+
"853": "thatch, thatched roof",
|
| 999 |
+
"854": "theater curtain, theatre curtain",
|
| 1000 |
+
"855": "thimble",
|
| 1001 |
+
"856": "thresher, thrasher, threshing machine",
|
| 1002 |
+
"857": "throne",
|
| 1003 |
+
"858": "tile roof",
|
| 1004 |
+
"859": "toaster",
|
| 1005 |
+
"860": "tobacco shop, tobacconist shop, tobacconist",
|
| 1006 |
+
"861": "toilet seat",
|
| 1007 |
+
"862": "torch",
|
| 1008 |
+
"863": "totem pole",
|
| 1009 |
+
"864": "tow truck, tow car, wrecker",
|
| 1010 |
+
"865": "toyshop",
|
| 1011 |
+
"866": "tractor",
|
| 1012 |
+
"867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
|
| 1013 |
+
"868": "tray",
|
| 1014 |
+
"869": "trench coat",
|
| 1015 |
+
"870": "tricycle, trike, velocipede",
|
| 1016 |
+
"871": "trimaran",
|
| 1017 |
+
"872": "tripod",
|
| 1018 |
+
"873": "triumphal arch",
|
| 1019 |
+
"874": "trolleybus, trolley coach, trackless trolley",
|
| 1020 |
+
"875": "trombone",
|
| 1021 |
+
"876": "tub, vat",
|
| 1022 |
+
"877": "turnstile",
|
| 1023 |
+
"878": "typewriter keyboard",
|
| 1024 |
+
"879": "umbrella",
|
| 1025 |
+
"880": "unicycle, monocycle",
|
| 1026 |
+
"881": "upright, upright piano",
|
| 1027 |
+
"882": "vacuum, vacuum cleaner",
|
| 1028 |
+
"883": "vase",
|
| 1029 |
+
"884": "vault",
|
| 1030 |
+
"885": "velvet",
|
| 1031 |
+
"886": "vending machine",
|
| 1032 |
+
"887": "vestment",
|
| 1033 |
+
"888": "viaduct",
|
| 1034 |
+
"889": "violin, fiddle",
|
| 1035 |
+
"890": "volleyball",
|
| 1036 |
+
"891": "waffle iron",
|
| 1037 |
+
"892": "wall clock",
|
| 1038 |
+
"893": "wallet, billfold, notecase, pocketbook",
|
| 1039 |
+
"894": "wardrobe, closet, press",
|
| 1040 |
+
"895": "warplane, military plane",
|
| 1041 |
+
"896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
|
| 1042 |
+
"897": "washer, automatic washer, washing machine",
|
| 1043 |
+
"898": "water bottle",
|
| 1044 |
+
"899": "water jug",
|
| 1045 |
+
"900": "water tower",
|
| 1046 |
+
"901": "whiskey jug",
|
| 1047 |
+
"902": "whistle",
|
| 1048 |
+
"903": "wig",
|
| 1049 |
+
"904": "window screen",
|
| 1050 |
+
"905": "window shade",
|
| 1051 |
+
"906": "Windsor tie",
|
| 1052 |
+
"907": "wine bottle",
|
| 1053 |
+
"908": "wing",
|
| 1054 |
+
"909": "wok",
|
| 1055 |
+
"910": "wooden spoon",
|
| 1056 |
+
"911": "wool, woolen, woollen",
|
| 1057 |
+
"912": "worm fence, snake fence, snake-rail fence, Virginia fence",
|
| 1058 |
+
"913": "wreck",
|
| 1059 |
+
"914": "yawl",
|
| 1060 |
+
"915": "yurt",
|
| 1061 |
+
"916": "web site, website, internet site, site",
|
| 1062 |
+
"917": "comic book",
|
| 1063 |
+
"918": "crossword puzzle, crossword",
|
| 1064 |
+
"919": "street sign",
|
| 1065 |
+
"920": "traffic light, traffic signal, stoplight",
|
| 1066 |
+
"921": "book jacket, dust cover, dust jacket, dust wrapper",
|
| 1067 |
+
"922": "menu",
|
| 1068 |
+
"923": "plate",
|
| 1069 |
+
"924": "guacamole",
|
| 1070 |
+
"925": "consomme",
|
| 1071 |
+
"926": "hot pot, hotpot",
|
| 1072 |
+
"927": "trifle",
|
| 1073 |
+
"928": "ice cream, icecream",
|
| 1074 |
+
"929": "ice lolly, lolly, lollipop, popsicle",
|
| 1075 |
+
"930": "French loaf",
|
| 1076 |
+
"931": "bagel, beigel",
|
| 1077 |
+
"932": "pretzel",
|
| 1078 |
+
"933": "cheeseburger",
|
| 1079 |
+
"934": "hotdog, hot dog, red hot",
|
| 1080 |
+
"935": "mashed potato",
|
| 1081 |
+
"936": "head cabbage",
|
| 1082 |
+
"937": "broccoli",
|
| 1083 |
+
"938": "cauliflower",
|
| 1084 |
+
"939": "zucchini, courgette",
|
| 1085 |
+
"940": "spaghetti squash",
|
| 1086 |
+
"941": "acorn squash",
|
| 1087 |
+
"942": "butternut squash",
|
| 1088 |
+
"943": "cucumber, cuke",
|
| 1089 |
+
"944": "artichoke, globe artichoke",
|
| 1090 |
+
"945": "bell pepper",
|
| 1091 |
+
"946": "cardoon",
|
| 1092 |
+
"947": "mushroom",
|
| 1093 |
+
"948": "Granny Smith",
|
| 1094 |
+
"949": "strawberry",
|
| 1095 |
+
"950": "orange",
|
| 1096 |
+
"951": "lemon",
|
| 1097 |
+
"952": "fig",
|
| 1098 |
+
"953": "pineapple, ananas",
|
| 1099 |
+
"954": "banana",
|
| 1100 |
+
"955": "jackfruit, jak, jack",
|
| 1101 |
+
"956": "custard apple",
|
| 1102 |
+
"957": "pomegranate",
|
| 1103 |
+
"958": "hay",
|
| 1104 |
+
"959": "carbonara",
|
| 1105 |
+
"960": "chocolate sauce, chocolate syrup",
|
| 1106 |
+
"961": "dough",
|
| 1107 |
+
"962": "meat loaf, meatloaf",
|
| 1108 |
+
"963": "pizza, pizza pie",
|
| 1109 |
+
"964": "potpie",
|
| 1110 |
+
"965": "burrito",
|
| 1111 |
+
"966": "red wine",
|
| 1112 |
+
"967": "espresso",
|
| 1113 |
+
"968": "cup",
|
| 1114 |
+
"969": "eggnog",
|
| 1115 |
+
"970": "alp",
|
| 1116 |
+
"971": "bubble",
|
| 1117 |
+
"972": "cliff, drop, drop-off",
|
| 1118 |
+
"973": "coral reef",
|
| 1119 |
+
"974": "geyser",
|
| 1120 |
+
"975": "lakeside, lakeshore",
|
| 1121 |
+
"976": "promontory, headland, head, foreland",
|
| 1122 |
+
"977": "sandbar, sand bar",
|
| 1123 |
+
"978": "seashore, coast, seacoast, sea-coast",
|
| 1124 |
+
"979": "valley, vale",
|
| 1125 |
+
"980": "volcano",
|
| 1126 |
+
"981": "ballplayer, baseball player",
|
| 1127 |
+
"982": "groom, bridegroom",
|
| 1128 |
+
"983": "scuba diver",
|
| 1129 |
+
"984": "rapeseed",
|
| 1130 |
+
"985": "daisy",
|
| 1131 |
+
"986": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
|
| 1132 |
+
"987": "corn",
|
| 1133 |
+
"988": "acorn",
|
| 1134 |
+
"989": "hip, rose hip, rosehip",
|
| 1135 |
+
"990": "buckeye, horse chestnut, conker",
|
| 1136 |
+
"991": "coral fungus",
|
| 1137 |
+
"992": "agaric",
|
| 1138 |
+
"993": "gyromitra",
|
| 1139 |
+
"994": "stinkhorn, carrion fungus",
|
| 1140 |
+
"995": "earthstar",
|
| 1141 |
+
"996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
|
| 1142 |
+
"997": "bolete",
|
| 1143 |
+
"998": "ear, spike, capitulum",
|
| 1144 |
+
"999": "toilet tissue, toilet paper, bathroom tissue"
|
| 1145 |
+
},
|
| 1146 |
+
"image_size": 384,
|
| 1147 |
+
"initializer_range": 0.02,
|
| 1148 |
+
"is_decoder": false,
|
| 1149 |
+
"is_encoder_decoder": false,
|
| 1150 |
+
"label2id": {
|
| 1151 |
+
"Afghan hound, Afghan": 160,
|
| 1152 |
+
"African chameleon, Chamaeleo chamaeleon": 47,
|
| 1153 |
+
"African crocodile, Nile crocodile, Crocodylus niloticus": 49,
|
| 1154 |
+
"African elephant, Loxodonta africana": 386,
|
| 1155 |
+
"African grey, African gray, Psittacus erithacus": 87,
|
| 1156 |
+
"African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus": 275,
|
| 1157 |
+
"Airedale, Airedale terrier": 191,
|
| 1158 |
+
"American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier": 180,
|
| 1159 |
+
"American alligator, Alligator mississipiensis": 50,
|
| 1160 |
+
"American black bear, black bear, Ursus americanus, Euarctos americanus": 295,
|
| 1161 |
+
"American chameleon, anole, Anolis carolinensis": 40,
|
| 1162 |
+
"American coot, marsh hen, mud hen, water hen, Fulica americana": 137,
|
| 1163 |
+
"American egret, great white heron, Egretta albus": 132,
|
| 1164 |
+
"American lobster, Northern lobster, Maine lobster, Homarus americanus": 122,
|
| 1165 |
+
"Angora, Angora rabbit": 332,
|
| 1166 |
+
"Appenzeller": 240,
|
| 1167 |
+
"Arabian camel, dromedary, Camelus dromedarius": 354,
|
| 1168 |
+
"Arctic fox, white fox, Alopex lagopus": 279,
|
| 1169 |
+
"Australian terrier": 193,
|
| 1170 |
+
"Band Aid": 419,
|
| 1171 |
+
"Bedlington terrier": 181,
|
| 1172 |
+
"Bernese mountain dog": 239,
|
| 1173 |
+
"Blenheim spaniel": 156,
|
| 1174 |
+
"Border collie": 232,
|
| 1175 |
+
"Border terrier": 182,
|
| 1176 |
+
"Boston bull, Boston terrier": 195,
|
| 1177 |
+
"Bouvier des Flandres, Bouviers des Flandres": 233,
|
| 1178 |
+
"Brabancon griffon": 262,
|
| 1179 |
+
"Brittany spaniel": 215,
|
| 1180 |
+
"CD player": 485,
|
| 1181 |
+
"Cardigan, Cardigan Welsh corgi": 264,
|
| 1182 |
+
"Chesapeake Bay retriever": 209,
|
| 1183 |
+
"Chihuahua": 151,
|
| 1184 |
+
"Christmas stocking": 496,
|
| 1185 |
+
"Crock Pot": 521,
|
| 1186 |
+
"Dandie Dinmont, Dandie Dinmont terrier": 194,
|
| 1187 |
+
"Doberman, Doberman pinscher": 236,
|
| 1188 |
+
"Dungeness crab, Cancer magister": 118,
|
| 1189 |
+
"Dutch oven": 544,
|
| 1190 |
+
"Egyptian cat": 285,
|
| 1191 |
+
"English foxhound": 167,
|
| 1192 |
+
"English setter": 212,
|
| 1193 |
+
"English springer, English springer spaniel": 217,
|
| 1194 |
+
"EntleBucher": 241,
|
| 1195 |
+
"Eskimo dog, husky": 248,
|
| 1196 |
+
"European fire salamander, Salamandra salamandra": 25,
|
| 1197 |
+
"European gallinule, Porphyrio porphyrio": 136,
|
| 1198 |
+
"French bulldog": 245,
|
| 1199 |
+
"French horn, horn": 566,
|
| 1200 |
+
"French loaf": 930,
|
| 1201 |
+
"German shepherd, German shepherd dog, German police dog, alsatian": 235,
|
| 1202 |
+
"German short-haired pointer": 210,
|
| 1203 |
+
"Gila monster, Heloderma suspectum": 45,
|
| 1204 |
+
"Gordon setter": 214,
|
| 1205 |
+
"Granny Smith": 948,
|
| 1206 |
+
"Great Dane": 246,
|
| 1207 |
+
"Great Pyrenees": 257,
|
| 1208 |
+
"Greater Swiss Mountain dog": 238,
|
| 1209 |
+
"Ibizan hound, Ibizan Podenco": 173,
|
| 1210 |
+
"Indian cobra, Naja naja": 63,
|
| 1211 |
+
"Indian elephant, Elephas maximus": 385,
|
| 1212 |
+
"Irish setter, red setter": 213,
|
| 1213 |
+
"Irish terrier": 184,
|
| 1214 |
+
"Irish water spaniel": 221,
|
| 1215 |
+
"Irish wolfhound": 170,
|
| 1216 |
+
"Italian greyhound": 171,
|
| 1217 |
+
"Japanese spaniel": 152,
|
| 1218 |
+
"Kerry blue terrier": 183,
|
| 1219 |
+
"Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis": 48,
|
| 1220 |
+
"Labrador retriever": 208,
|
| 1221 |
+
"Lakeland terrier": 189,
|
| 1222 |
+
"Leonberg": 255,
|
| 1223 |
+
"Lhasa, Lhasa apso": 204,
|
| 1224 |
+
"Loafer": 630,
|
| 1225 |
+
"Madagascar cat, ring-tailed lemur, Lemur catta": 383,
|
| 1226 |
+
"Maltese dog, Maltese terrier, Maltese": 153,
|
| 1227 |
+
"Mexican hairless": 268,
|
| 1228 |
+
"Model T": 661,
|
| 1229 |
+
"Newfoundland, Newfoundland dog": 256,
|
| 1230 |
+
"Norfolk terrier": 185,
|
| 1231 |
+
"Norwegian elkhound, elkhound": 174,
|
| 1232 |
+
"Norwich terrier": 186,
|
| 1233 |
+
"Old English sheepdog, bobtail": 229,
|
| 1234 |
+
"Pekinese, Pekingese, Peke": 154,
|
| 1235 |
+
"Pembroke, Pembroke Welsh corgi": 263,
|
| 1236 |
+
"Persian cat": 283,
|
| 1237 |
+
"Petri dish": 712,
|
| 1238 |
+
"Polaroid camera, Polaroid Land camera": 732,
|
| 1239 |
+
"Pomeranian": 259,
|
| 1240 |
+
"Rhodesian ridgeback": 159,
|
| 1241 |
+
"Rottweiler": 234,
|
| 1242 |
+
"Saint Bernard, St Bernard": 247,
|
| 1243 |
+
"Saluki, gazelle hound": 176,
|
| 1244 |
+
"Samoyed, Samoyede": 258,
|
| 1245 |
+
"Scotch terrier, Scottish terrier, Scottie": 199,
|
| 1246 |
+
"Scottish deerhound, deerhound": 177,
|
| 1247 |
+
"Sealyham terrier, Sealyham": 190,
|
| 1248 |
+
"Shetland sheepdog, Shetland sheep dog, Shetland": 230,
|
| 1249 |
+
"Shih-Tzu": 155,
|
| 1250 |
+
"Siamese cat, Siamese": 284,
|
| 1251 |
+
"Siberian husky": 250,
|
| 1252 |
+
"Staffordshire bullterrier, Staffordshire bull terrier": 179,
|
| 1253 |
+
"Sussex spaniel": 220,
|
| 1254 |
+
"Tibetan mastiff": 244,
|
| 1255 |
+
"Tibetan terrier, chrysanthemum dog": 200,
|
| 1256 |
+
"Walker hound, Walker foxhound": 166,
|
| 1257 |
+
"Weimaraner": 178,
|
| 1258 |
+
"Welsh springer spaniel": 218,
|
| 1259 |
+
"West Highland white terrier": 203,
|
| 1260 |
+
"Windsor tie": 906,
|
| 1261 |
+
"Yorkshire terrier": 187,
|
| 1262 |
+
"abacus": 398,
|
| 1263 |
+
"abaya": 399,
|
| 1264 |
+
"academic gown, academic robe, judge's robe": 400,
|
| 1265 |
+
"accordion, piano accordion, squeeze box": 401,
|
| 1266 |
+
"acorn": 988,
|
| 1267 |
+
"acorn squash": 941,
|
| 1268 |
+
"acoustic guitar": 402,
|
| 1269 |
+
"admiral": 321,
|
| 1270 |
+
"affenpinscher, monkey pinscher, monkey dog": 252,
|
| 1271 |
+
"agama": 42,
|
| 1272 |
+
"agaric": 992,
|
| 1273 |
+
"aircraft carrier, carrier, flattop, attack aircraft carrier": 403,
|
| 1274 |
+
"airliner": 404,
|
| 1275 |
+
"airship, dirigible": 405,
|
| 1276 |
+
"albatross, mollymawk": 146,
|
| 1277 |
+
"alligator lizard": 44,
|
| 1278 |
+
"alp": 970,
|
| 1279 |
+
"altar": 406,
|
| 1280 |
+
"ambulance": 407,
|
| 1281 |
+
"amphibian, amphibious vehicle": 408,
|
| 1282 |
+
"analog clock": 409,
|
| 1283 |
+
"anemone fish": 393,
|
| 1284 |
+
"ant, emmet, pismire": 310,
|
| 1285 |
+
"apiary, bee house": 410,
|
| 1286 |
+
"apron": 411,
|
| 1287 |
+
"armadillo": 363,
|
| 1288 |
+
"artichoke, globe artichoke": 944,
|
| 1289 |
+
"ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin": 412,
|
| 1290 |
+
"assault rifle, assault gun": 413,
|
| 1291 |
+
"axolotl, mud puppy, Ambystoma mexicanum": 29,
|
| 1292 |
+
"baboon": 372,
|
| 1293 |
+
"backpack, back pack, knapsack, packsack, rucksack, haversack": 414,
|
| 1294 |
+
"badger": 362,
|
| 1295 |
+
"bagel, beigel": 931,
|
| 1296 |
+
"bakery, bakeshop, bakehouse": 415,
|
| 1297 |
+
"balance beam, beam": 416,
|
| 1298 |
+
"bald eagle, American eagle, Haliaeetus leucocephalus": 22,
|
| 1299 |
+
"balloon": 417,
|
| 1300 |
+
"ballplayer, baseball player": 981,
|
| 1301 |
+
"ballpoint, ballpoint pen, ballpen, Biro": 418,
|
| 1302 |
+
"banana": 954,
|
| 1303 |
+
"banded gecko": 38,
|
| 1304 |
+
"banjo": 420,
|
| 1305 |
+
"bannister, banister, balustrade, balusters, handrail": 421,
|
| 1306 |
+
"barbell": 422,
|
| 1307 |
+
"barber chair": 423,
|
| 1308 |
+
"barbershop": 424,
|
| 1309 |
+
"barn": 425,
|
| 1310 |
+
"barn spider, Araneus cavaticus": 73,
|
| 1311 |
+
"barometer": 426,
|
| 1312 |
+
"barracouta, snoek": 389,
|
| 1313 |
+
"barrel, cask": 427,
|
| 1314 |
+
"barrow, garden cart, lawn cart, wheelbarrow": 428,
|
| 1315 |
+
"baseball": 429,
|
| 1316 |
+
"basenji": 253,
|
| 1317 |
+
"basketball": 430,
|
| 1318 |
+
"basset, basset hound": 161,
|
| 1319 |
+
"bassinet": 431,
|
| 1320 |
+
"bassoon": 432,
|
| 1321 |
+
"bath towel": 434,
|
| 1322 |
+
"bathing cap, swimming cap": 433,
|
| 1323 |
+
"bathtub, bathing tub, bath, tub": 435,
|
| 1324 |
+
"beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon": 436,
|
| 1325 |
+
"beacon, lighthouse, beacon light, pharos": 437,
|
| 1326 |
+
"beagle": 162,
|
| 1327 |
+
"beaker": 438,
|
| 1328 |
+
"bearskin, busby, shako": 439,
|
| 1329 |
+
"beaver": 337,
|
| 1330 |
+
"bee": 309,
|
| 1331 |
+
"bee eater": 92,
|
| 1332 |
+
"beer bottle": 440,
|
| 1333 |
+
"beer glass": 441,
|
| 1334 |
+
"bell cote, bell cot": 442,
|
| 1335 |
+
"bell pepper": 945,
|
| 1336 |
+
"bib": 443,
|
| 1337 |
+
"bicycle-built-for-two, tandem bicycle, tandem": 444,
|
| 1338 |
+
"bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis": 349,
|
| 1339 |
+
"bikini, two-piece": 445,
|
| 1340 |
+
"binder, ring-binder": 446,
|
| 1341 |
+
"binoculars, field glasses, opera glasses": 447,
|
| 1342 |
+
"birdhouse": 448,
|
| 1343 |
+
"bison": 347,
|
| 1344 |
+
"bittern": 133,
|
| 1345 |
+
"black and gold garden spider, Argiope aurantia": 72,
|
| 1346 |
+
"black grouse": 80,
|
| 1347 |
+
"black stork, Ciconia nigra": 128,
|
| 1348 |
+
"black swan, Cygnus atratus": 100,
|
| 1349 |
+
"black widow, Latrodectus mactans": 75,
|
| 1350 |
+
"black-and-tan coonhound": 165,
|
| 1351 |
+
"black-footed ferret, ferret, Mustela nigripes": 359,
|
| 1352 |
+
"bloodhound, sleuthhound": 163,
|
| 1353 |
+
"bluetick": 164,
|
| 1354 |
+
"boa constrictor, Constrictor constrictor": 61,
|
| 1355 |
+
"boathouse": 449,
|
| 1356 |
+
"bobsled, bobsleigh, bob": 450,
|
| 1357 |
+
"bolete": 997,
|
| 1358 |
+
"bolo tie, bolo, bola tie, bola": 451,
|
| 1359 |
+
"bonnet, poke bonnet": 452,
|
| 1360 |
+
"book jacket, dust cover, dust jacket, dust wrapper": 921,
|
| 1361 |
+
"bookcase": 453,
|
| 1362 |
+
"bookshop, bookstore, bookstall": 454,
|
| 1363 |
+
"borzoi, Russian wolfhound": 169,
|
| 1364 |
+
"bottlecap": 455,
|
| 1365 |
+
"bow": 456,
|
| 1366 |
+
"bow tie, bow-tie, bowtie": 457,
|
| 1367 |
+
"box turtle, box tortoise": 37,
|
| 1368 |
+
"boxer": 242,
|
| 1369 |
+
"brain coral": 109,
|
| 1370 |
+
"brambling, Fringilla montifringilla": 10,
|
| 1371 |
+
"brass, memorial tablet, plaque": 458,
|
| 1372 |
+
"brassiere, bra, bandeau": 459,
|
| 1373 |
+
"breakwater, groin, groyne, mole, bulwark, seawall, jetty": 460,
|
| 1374 |
+
"breastplate, aegis, egis": 461,
|
| 1375 |
+
"briard": 226,
|
| 1376 |
+
"broccoli": 937,
|
| 1377 |
+
"broom": 462,
|
| 1378 |
+
"brown bear, bruin, Ursus arctos": 294,
|
| 1379 |
+
"bubble": 971,
|
| 1380 |
+
"bucket, pail": 463,
|
| 1381 |
+
"buckeye, horse chestnut, conker": 990,
|
| 1382 |
+
"buckle": 464,
|
| 1383 |
+
"bulbul": 16,
|
| 1384 |
+
"bull mastiff": 243,
|
| 1385 |
+
"bullet train, bullet": 466,
|
| 1386 |
+
"bulletproof vest": 465,
|
| 1387 |
+
"bullfrog, Rana catesbeiana": 30,
|
| 1388 |
+
"burrito": 965,
|
| 1389 |
+
"bustard": 138,
|
| 1390 |
+
"butcher shop, meat market": 467,
|
| 1391 |
+
"butternut squash": 942,
|
| 1392 |
+
"cab, hack, taxi, taxicab": 468,
|
| 1393 |
+
"cabbage butterfly": 324,
|
| 1394 |
+
"cairn, cairn terrier": 192,
|
| 1395 |
+
"caldron, cauldron": 469,
|
| 1396 |
+
"can opener, tin opener": 473,
|
| 1397 |
+
"candle, taper, wax light": 470,
|
| 1398 |
+
"cannon": 471,
|
| 1399 |
+
"canoe": 472,
|
| 1400 |
+
"capuchin, ringtail, Cebus capucinus": 378,
|
| 1401 |
+
"car mirror": 475,
|
| 1402 |
+
"car wheel": 479,
|
| 1403 |
+
"carbonara": 959,
|
| 1404 |
+
"cardigan": 474,
|
| 1405 |
+
"cardoon": 946,
|
| 1406 |
+
"carousel, carrousel, merry-go-round, roundabout, whirligig": 476,
|
| 1407 |
+
"carpenter's kit, tool kit": 477,
|
| 1408 |
+
"carton": 478,
|
| 1409 |
+
"cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM": 480,
|
| 1410 |
+
"cassette": 481,
|
| 1411 |
+
"cassette player": 482,
|
| 1412 |
+
"castle": 483,
|
| 1413 |
+
"catamaran": 484,
|
| 1414 |
+
"cauliflower": 938,
|
| 1415 |
+
"cello, violoncello": 486,
|
| 1416 |
+
"cellular telephone, cellular phone, cellphone, cell, mobile phone": 487,
|
| 1417 |
+
"centipede": 79,
|
| 1418 |
+
"chain": 488,
|
| 1419 |
+
"chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour": 490,
|
| 1420 |
+
"chain saw, chainsaw": 491,
|
| 1421 |
+
"chainlink fence": 489,
|
| 1422 |
+
"chambered nautilus, pearly nautilus, nautilus": 117,
|
| 1423 |
+
"cheeseburger": 933,
|
| 1424 |
+
"cheetah, chetah, Acinonyx jubatus": 293,
|
| 1425 |
+
"chest": 492,
|
| 1426 |
+
"chickadee": 19,
|
| 1427 |
+
"chiffonier, commode": 493,
|
| 1428 |
+
"chime, bell, gong": 494,
|
| 1429 |
+
"chimpanzee, chimp, Pan troglodytes": 367,
|
| 1430 |
+
"china cabinet, china closet": 495,
|
| 1431 |
+
"chiton, coat-of-mail shell, sea cradle, polyplacophore": 116,
|
| 1432 |
+
"chocolate sauce, chocolate syrup": 960,
|
| 1433 |
+
"chow, chow chow": 260,
|
| 1434 |
+
"church, church building": 497,
|
| 1435 |
+
"cicada, cicala": 316,
|
| 1436 |
+
"cinema, movie theater, movie theatre, movie house, picture palace": 498,
|
| 1437 |
+
"cleaver, meat cleaver, chopper": 499,
|
| 1438 |
+
"cliff dwelling": 500,
|
| 1439 |
+
"cliff, drop, drop-off": 972,
|
| 1440 |
+
"cloak": 501,
|
| 1441 |
+
"clog, geta, patten, sabot": 502,
|
| 1442 |
+
"clumber, clumber spaniel": 216,
|
| 1443 |
+
"cock": 7,
|
| 1444 |
+
"cocker spaniel, English cocker spaniel, cocker": 219,
|
| 1445 |
+
"cockroach, roach": 314,
|
| 1446 |
+
"cocktail shaker": 503,
|
| 1447 |
+
"coffee mug": 504,
|
| 1448 |
+
"coffeepot": 505,
|
| 1449 |
+
"coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch": 391,
|
| 1450 |
+
"coil, spiral, volute, whorl, helix": 506,
|
| 1451 |
+
"collie": 231,
|
| 1452 |
+
"colobus, colobus monkey": 375,
|
| 1453 |
+
"combination lock": 507,
|
| 1454 |
+
"comic book": 917,
|
| 1455 |
+
"common iguana, iguana, Iguana iguana": 39,
|
| 1456 |
+
"common newt, Triturus vulgaris": 26,
|
| 1457 |
+
"computer keyboard, keypad": 508,
|
| 1458 |
+
"conch": 112,
|
| 1459 |
+
"confectionery, confectionary, candy store": 509,
|
| 1460 |
+
"consomme": 925,
|
| 1461 |
+
"container ship, containership, container vessel": 510,
|
| 1462 |
+
"convertible": 511,
|
| 1463 |
+
"coral fungus": 991,
|
| 1464 |
+
"coral reef": 973,
|
| 1465 |
+
"corkscrew, bottle screw": 512,
|
| 1466 |
+
"corn": 987,
|
| 1467 |
+
"cornet, horn, trumpet, trump": 513,
|
| 1468 |
+
"coucal": 91,
|
| 1469 |
+
"cougar, puma, catamount, mountain lion, painter, panther, Felis concolor": 286,
|
| 1470 |
+
"cowboy boot": 514,
|
| 1471 |
+
"cowboy hat, ten-gallon hat": 515,
|
| 1472 |
+
"coyote, prairie wolf, brush wolf, Canis latrans": 272,
|
| 1473 |
+
"cradle": 516,
|
| 1474 |
+
"crane": 517,
|
| 1475 |
+
"crash helmet": 518,
|
| 1476 |
+
"crate": 519,
|
| 1477 |
+
"crayfish, crawfish, crawdad, crawdaddy": 124,
|
| 1478 |
+
"crib, cot": 520,
|
| 1479 |
+
"cricket": 312,
|
| 1480 |
+
"croquet ball": 522,
|
| 1481 |
+
"crossword puzzle, crossword": 918,
|
| 1482 |
+
"crutch": 523,
|
| 1483 |
+
"cucumber, cuke": 943,
|
| 1484 |
+
"cuirass": 524,
|
| 1485 |
+
"cup": 968,
|
| 1486 |
+
"curly-coated retriever": 206,
|
| 1487 |
+
"custard apple": 956,
|
| 1488 |
+
"daisy": 985,
|
| 1489 |
+
"dalmatian, coach dog, carriage dog": 251,
|
| 1490 |
+
"dam, dike, dyke": 525,
|
| 1491 |
+
"damselfly": 320,
|
| 1492 |
+
"desk": 526,
|
| 1493 |
+
"desktop computer": 527,
|
| 1494 |
+
"dhole, Cuon alpinus": 274,
|
| 1495 |
+
"dial telephone, dial phone": 528,
|
| 1496 |
+
"diamondback, diamondback rattlesnake, Crotalus adamanteus": 67,
|
| 1497 |
+
"diaper, nappy, napkin": 529,
|
| 1498 |
+
"digital clock": 530,
|
| 1499 |
+
"digital watch": 531,
|
| 1500 |
+
"dingo, warrigal, warragal, Canis dingo": 273,
|
| 1501 |
+
"dining table, board": 532,
|
| 1502 |
+
"dishrag, dishcloth": 533,
|
| 1503 |
+
"dishwasher, dish washer, dishwashing machine": 534,
|
| 1504 |
+
"disk brake, disc brake": 535,
|
| 1505 |
+
"dock, dockage, docking facility": 536,
|
| 1506 |
+
"dogsled, dog sled, dog sleigh": 537,
|
| 1507 |
+
"dome": 538,
|
| 1508 |
+
"doormat, welcome mat": 539,
|
| 1509 |
+
"dough": 961,
|
| 1510 |
+
"dowitcher": 142,
|
| 1511 |
+
"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk": 319,
|
| 1512 |
+
"drake": 97,
|
| 1513 |
+
"drilling platform, offshore rig": 540,
|
| 1514 |
+
"drum, membranophone, tympan": 541,
|
| 1515 |
+
"drumstick": 542,
|
| 1516 |
+
"dugong, Dugong dugon": 149,
|
| 1517 |
+
"dumbbell": 543,
|
| 1518 |
+
"dung beetle": 305,
|
| 1519 |
+
"ear, spike, capitulum": 998,
|
| 1520 |
+
"earthstar": 995,
|
| 1521 |
+
"echidna, spiny anteater, anteater": 102,
|
| 1522 |
+
"eel": 390,
|
| 1523 |
+
"eft": 27,
|
| 1524 |
+
"eggnog": 969,
|
| 1525 |
+
"electric fan, blower": 545,
|
| 1526 |
+
"electric guitar": 546,
|
| 1527 |
+
"electric locomotive": 547,
|
| 1528 |
+
"electric ray, crampfish, numbfish, torpedo": 5,
|
| 1529 |
+
"entertainment center": 548,
|
| 1530 |
+
"envelope": 549,
|
| 1531 |
+
"espresso": 967,
|
| 1532 |
+
"espresso maker": 550,
|
| 1533 |
+
"face powder": 551,
|
| 1534 |
+
"feather boa, boa": 552,
|
| 1535 |
+
"fiddler crab": 120,
|
| 1536 |
+
"fig": 952,
|
| 1537 |
+
"file, file cabinet, filing cabinet": 553,
|
| 1538 |
+
"fire engine, fire truck": 555,
|
| 1539 |
+
"fire screen, fireguard": 556,
|
| 1540 |
+
"fireboat": 554,
|
| 1541 |
+
"flagpole, flagstaff": 557,
|
| 1542 |
+
"flamingo": 130,
|
| 1543 |
+
"flat-coated retriever": 205,
|
| 1544 |
+
"flatworm, platyhelminth": 110,
|
| 1545 |
+
"flute, transverse flute": 558,
|
| 1546 |
+
"fly": 308,
|
| 1547 |
+
"folding chair": 559,
|
| 1548 |
+
"football helmet": 560,
|
| 1549 |
+
"forklift": 561,
|
| 1550 |
+
"fountain": 562,
|
| 1551 |
+
"fountain pen": 563,
|
| 1552 |
+
"four-poster": 564,
|
| 1553 |
+
"fox squirrel, eastern fox squirrel, Sciurus niger": 335,
|
| 1554 |
+
"freight car": 565,
|
| 1555 |
+
"frilled lizard, Chlamydosaurus kingi": 43,
|
| 1556 |
+
"frying pan, frypan, skillet": 567,
|
| 1557 |
+
"fur coat": 568,
|
| 1558 |
+
"gar, garfish, garpike, billfish, Lepisosteus osseus": 395,
|
| 1559 |
+
"garbage truck, dustcart": 569,
|
| 1560 |
+
"garden spider, Aranea diademata": 74,
|
| 1561 |
+
"garter snake, grass snake": 57,
|
| 1562 |
+
"gas pump, gasoline pump, petrol pump, island dispenser": 571,
|
| 1563 |
+
"gasmask, respirator, gas helmet": 570,
|
| 1564 |
+
"gazelle": 353,
|
| 1565 |
+
"geyser": 974,
|
| 1566 |
+
"giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca": 388,
|
| 1567 |
+
"giant schnauzer": 197,
|
| 1568 |
+
"gibbon, Hylobates lar": 368,
|
| 1569 |
+
"go-kart": 573,
|
| 1570 |
+
"goblet": 572,
|
| 1571 |
+
"golden retriever": 207,
|
| 1572 |
+
"goldfinch, Carduelis carduelis": 11,
|
| 1573 |
+
"goldfish, Carassius auratus": 1,
|
| 1574 |
+
"golf ball": 574,
|
| 1575 |
+
"golfcart, golf cart": 575,
|
| 1576 |
+
"gondola": 576,
|
| 1577 |
+
"gong, tam-tam": 577,
|
| 1578 |
+
"goose": 99,
|
| 1579 |
+
"gorilla, Gorilla gorilla": 366,
|
| 1580 |
+
"gown": 578,
|
| 1581 |
+
"grand piano, grand": 579,
|
| 1582 |
+
"grasshopper, hopper": 311,
|
| 1583 |
+
"great grey owl, great gray owl, Strix nebulosa": 24,
|
| 1584 |
+
"great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias": 2,
|
| 1585 |
+
"green lizard, Lacerta viridis": 46,
|
| 1586 |
+
"green mamba": 64,
|
| 1587 |
+
"green snake, grass snake": 55,
|
| 1588 |
+
"greenhouse, nursery, glasshouse": 580,
|
| 1589 |
+
"grey fox, gray fox, Urocyon cinereoargenteus": 280,
|
| 1590 |
+
"grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus": 147,
|
| 1591 |
+
"grille, radiator grille": 581,
|
| 1592 |
+
"grocery store, grocery, food market, market": 582,
|
| 1593 |
+
"groenendael": 224,
|
| 1594 |
+
"groom, bridegroom": 982,
|
| 1595 |
+
"ground beetle, carabid beetle": 302,
|
| 1596 |
+
"guacamole": 924,
|
| 1597 |
+
"guenon, guenon monkey": 370,
|
| 1598 |
+
"guillotine": 583,
|
| 1599 |
+
"guinea pig, Cavia cobaya": 338,
|
| 1600 |
+
"gyromitra": 993,
|
| 1601 |
+
"hair slide": 584,
|
| 1602 |
+
"hair spray": 585,
|
| 1603 |
+
"half track": 586,
|
| 1604 |
+
"hammer": 587,
|
| 1605 |
+
"hammerhead, hammerhead shark": 4,
|
| 1606 |
+
"hamper": 588,
|
| 1607 |
+
"hamster": 333,
|
| 1608 |
+
"hand blower, blow dryer, blow drier, hair dryer, hair drier": 589,
|
| 1609 |
+
"hand-held computer, hand-held microcomputer": 590,
|
| 1610 |
+
"handkerchief, hankie, hanky, hankey": 591,
|
| 1611 |
+
"hard disc, hard disk, fixed disk": 592,
|
| 1612 |
+
"hare": 331,
|
| 1613 |
+
"harmonica, mouth organ, harp, mouth harp": 593,
|
| 1614 |
+
"harp": 594,
|
| 1615 |
+
"hartebeest": 351,
|
| 1616 |
+
"harvester, reaper": 595,
|
| 1617 |
+
"harvestman, daddy longlegs, Phalangium opilio": 70,
|
| 1618 |
+
"hatchet": 596,
|
| 1619 |
+
"hay": 958,
|
| 1620 |
+
"head cabbage": 936,
|
| 1621 |
+
"hen": 8,
|
| 1622 |
+
"hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa": 996,
|
| 1623 |
+
"hermit crab": 125,
|
| 1624 |
+
"hip, rose hip, rosehip": 989,
|
| 1625 |
+
"hippopotamus, hippo, river horse, Hippopotamus amphibius": 344,
|
| 1626 |
+
"hog, pig, grunter, squealer, Sus scrofa": 341,
|
| 1627 |
+
"hognose snake, puff adder, sand viper": 54,
|
| 1628 |
+
"holster": 597,
|
| 1629 |
+
"home theater, home theatre": 598,
|
| 1630 |
+
"honeycomb": 599,
|
| 1631 |
+
"hook, claw": 600,
|
| 1632 |
+
"hoopskirt, crinoline": 601,
|
| 1633 |
+
"horizontal bar, high bar": 602,
|
| 1634 |
+
"hornbill": 93,
|
| 1635 |
+
"horned viper, cerastes, sand viper, horned asp, Cerastes cornutus": 66,
|
| 1636 |
+
"horse cart, horse-cart": 603,
|
| 1637 |
+
"hot pot, hotpot": 926,
|
| 1638 |
+
"hotdog, hot dog, red hot": 934,
|
| 1639 |
+
"hourglass": 604,
|
| 1640 |
+
"house finch, linnet, Carpodacus mexicanus": 12,
|
| 1641 |
+
"howler monkey, howler": 379,
|
| 1642 |
+
"hummingbird": 94,
|
| 1643 |
+
"hyena, hyaena": 276,
|
| 1644 |
+
"iPod": 605,
|
| 1645 |
+
"ibex, Capra ibex": 350,
|
| 1646 |
+
"ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus": 296,
|
| 1647 |
+
"ice cream, icecream": 928,
|
| 1648 |
+
"ice lolly, lolly, lollipop, popsicle": 929,
|
| 1649 |
+
"impala, Aepyceros melampus": 352,
|
| 1650 |
+
"indigo bunting, indigo finch, indigo bird, Passerina cyanea": 14,
|
| 1651 |
+
"indri, indris, Indri indri, Indri brevicaudatus": 384,
|
| 1652 |
+
"iron, smoothing iron": 606,
|
| 1653 |
+
"isopod": 126,
|
| 1654 |
+
"jacamar": 95,
|
| 1655 |
+
"jack-o'-lantern": 607,
|
| 1656 |
+
"jackfruit, jak, jack": 955,
|
| 1657 |
+
"jaguar, panther, Panthera onca, Felis onca": 290,
|
| 1658 |
+
"jay": 17,
|
| 1659 |
+
"jean, blue jean, denim": 608,
|
| 1660 |
+
"jeep, landrover": 609,
|
| 1661 |
+
"jellyfish": 107,
|
| 1662 |
+
"jersey, T-shirt, tee shirt": 610,
|
| 1663 |
+
"jigsaw puzzle": 611,
|
| 1664 |
+
"jinrikisha, ricksha, rickshaw": 612,
|
| 1665 |
+
"joystick": 613,
|
| 1666 |
+
"junco, snowbird": 13,
|
| 1667 |
+
"keeshond": 261,
|
| 1668 |
+
"kelpie": 227,
|
| 1669 |
+
"killer whale, killer, orca, grampus, sea wolf, Orcinus orca": 148,
|
| 1670 |
+
"kimono": 614,
|
| 1671 |
+
"king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica": 121,
|
| 1672 |
+
"king penguin, Aptenodytes patagonica": 145,
|
| 1673 |
+
"king snake, kingsnake": 56,
|
| 1674 |
+
"kit fox, Vulpes macrotis": 278,
|
| 1675 |
+
"kite": 21,
|
| 1676 |
+
"knee pad": 615,
|
| 1677 |
+
"knot": 616,
|
| 1678 |
+
"koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus": 105,
|
| 1679 |
+
"komondor": 228,
|
| 1680 |
+
"kuvasz": 222,
|
| 1681 |
+
"lab coat, laboratory coat": 617,
|
| 1682 |
+
"lacewing, lacewing fly": 318,
|
| 1683 |
+
"ladle": 618,
|
| 1684 |
+
"ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle": 301,
|
| 1685 |
+
"lakeside, lakeshore": 975,
|
| 1686 |
+
"lampshade, lamp shade": 619,
|
| 1687 |
+
"langur": 374,
|
| 1688 |
+
"laptop, laptop computer": 620,
|
| 1689 |
+
"lawn mower, mower": 621,
|
| 1690 |
+
"leaf beetle, chrysomelid": 304,
|
| 1691 |
+
"leafhopper": 317,
|
| 1692 |
+
"leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea": 34,
|
| 1693 |
+
"lemon": 951,
|
| 1694 |
+
"lens cap, lens cover": 622,
|
| 1695 |
+
"leopard, Panthera pardus": 288,
|
| 1696 |
+
"lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens": 387,
|
| 1697 |
+
"letter opener, paper knife, paperknife": 623,
|
| 1698 |
+
"library": 624,
|
| 1699 |
+
"lifeboat": 625,
|
| 1700 |
+
"lighter, light, igniter, ignitor": 626,
|
| 1701 |
+
"limousine, limo": 627,
|
| 1702 |
+
"limpkin, Aramus pictus": 135,
|
| 1703 |
+
"liner, ocean liner": 628,
|
| 1704 |
+
"lion, king of beasts, Panthera leo": 291,
|
| 1705 |
+
"lionfish": 396,
|
| 1706 |
+
"lipstick, lip rouge": 629,
|
| 1707 |
+
"little blue heron, Egretta caerulea": 131,
|
| 1708 |
+
"llama": 355,
|
| 1709 |
+
"loggerhead, loggerhead turtle, Caretta caretta": 33,
|
| 1710 |
+
"long-horned beetle, longicorn, longicorn beetle": 303,
|
| 1711 |
+
"lorikeet": 90,
|
| 1712 |
+
"lotion": 631,
|
| 1713 |
+
"loudspeaker, speaker, speaker unit, loudspeaker system, speaker system": 632,
|
| 1714 |
+
"loupe, jeweler's loupe": 633,
|
| 1715 |
+
"lumbermill, sawmill": 634,
|
| 1716 |
+
"lycaenid, lycaenid butterfly": 326,
|
| 1717 |
+
"lynx, catamount": 287,
|
| 1718 |
+
"macaque": 373,
|
| 1719 |
+
"macaw": 88,
|
| 1720 |
+
"magnetic compass": 635,
|
| 1721 |
+
"magpie": 18,
|
| 1722 |
+
"mailbag, postbag": 636,
|
| 1723 |
+
"mailbox, letter box": 637,
|
| 1724 |
+
"maillot": 638,
|
| 1725 |
+
"maillot, tank suit": 639,
|
| 1726 |
+
"malamute, malemute, Alaskan malamute": 249,
|
| 1727 |
+
"malinois": 225,
|
| 1728 |
+
"manhole cover": 640,
|
| 1729 |
+
"mantis, mantid": 315,
|
| 1730 |
+
"maraca": 641,
|
| 1731 |
+
"marimba, xylophone": 642,
|
| 1732 |
+
"marmoset": 377,
|
| 1733 |
+
"marmot": 336,
|
| 1734 |
+
"mashed potato": 935,
|
| 1735 |
+
"mask": 643,
|
| 1736 |
+
"matchstick": 644,
|
| 1737 |
+
"maypole": 645,
|
| 1738 |
+
"maze, labyrinth": 646,
|
| 1739 |
+
"measuring cup": 647,
|
| 1740 |
+
"meat loaf, meatloaf": 962,
|
| 1741 |
+
"medicine chest, medicine cabinet": 648,
|
| 1742 |
+
"meerkat, mierkat": 299,
|
| 1743 |
+
"megalith, megalithic structure": 649,
|
| 1744 |
+
"menu": 922,
|
| 1745 |
+
"microphone, mike": 650,
|
| 1746 |
+
"microwave, microwave oven": 651,
|
| 1747 |
+
"military uniform": 652,
|
| 1748 |
+
"milk can": 653,
|
| 1749 |
+
"miniature pinscher": 237,
|
| 1750 |
+
"miniature poodle": 266,
|
| 1751 |
+
"miniature schnauzer": 196,
|
| 1752 |
+
"minibus": 654,
|
| 1753 |
+
"miniskirt, mini": 655,
|
| 1754 |
+
"minivan": 656,
|
| 1755 |
+
"mink": 357,
|
| 1756 |
+
"missile": 657,
|
| 1757 |
+
"mitten": 658,
|
| 1758 |
+
"mixing bowl": 659,
|
| 1759 |
+
"mobile home, manufactured home": 660,
|
| 1760 |
+
"modem": 662,
|
| 1761 |
+
"monarch, monarch butterfly, milkweed butterfly, Danaus plexippus": 323,
|
| 1762 |
+
"monastery": 663,
|
| 1763 |
+
"mongoose": 298,
|
| 1764 |
+
"monitor": 664,
|
| 1765 |
+
"moped": 665,
|
| 1766 |
+
"mortar": 666,
|
| 1767 |
+
"mortarboard": 667,
|
| 1768 |
+
"mosque": 668,
|
| 1769 |
+
"mosquito net": 669,
|
| 1770 |
+
"motor scooter, scooter": 670,
|
| 1771 |
+
"mountain bike, all-terrain bike, off-roader": 671,
|
| 1772 |
+
"mountain tent": 672,
|
| 1773 |
+
"mouse, computer mouse": 673,
|
| 1774 |
+
"mousetrap": 674,
|
| 1775 |
+
"moving van": 675,
|
| 1776 |
+
"mud turtle": 35,
|
| 1777 |
+
"mushroom": 947,
|
| 1778 |
+
"muzzle": 676,
|
| 1779 |
+
"nail": 677,
|
| 1780 |
+
"neck brace": 678,
|
| 1781 |
+
"necklace": 679,
|
| 1782 |
+
"nematode, nematode worm, roundworm": 111,
|
| 1783 |
+
"night snake, Hypsiglena torquata": 60,
|
| 1784 |
+
"nipple": 680,
|
| 1785 |
+
"notebook, notebook computer": 681,
|
| 1786 |
+
"obelisk": 682,
|
| 1787 |
+
"oboe, hautboy, hautbois": 683,
|
| 1788 |
+
"ocarina, sweet potato": 684,
|
| 1789 |
+
"odometer, hodometer, mileometer, milometer": 685,
|
| 1790 |
+
"oil filter": 686,
|
| 1791 |
+
"orange": 950,
|
| 1792 |
+
"orangutan, orang, orangutang, Pongo pygmaeus": 365,
|
| 1793 |
+
"organ, pipe organ": 687,
|
| 1794 |
+
"oscilloscope, scope, cathode-ray oscilloscope, CRO": 688,
|
| 1795 |
+
"ostrich, Struthio camelus": 9,
|
| 1796 |
+
"otter": 360,
|
| 1797 |
+
"otterhound, otter hound": 175,
|
| 1798 |
+
"overskirt": 689,
|
| 1799 |
+
"ox": 345,
|
| 1800 |
+
"oxcart": 690,
|
| 1801 |
+
"oxygen mask": 691,
|
| 1802 |
+
"oystercatcher, oyster catcher": 143,
|
| 1803 |
+
"packet": 692,
|
| 1804 |
+
"paddle, boat paddle": 693,
|
| 1805 |
+
"paddlewheel, paddle wheel": 694,
|
| 1806 |
+
"padlock": 695,
|
| 1807 |
+
"paintbrush": 696,
|
| 1808 |
+
"pajama, pyjama, pj's, jammies": 697,
|
| 1809 |
+
"palace": 698,
|
| 1810 |
+
"panpipe, pandean pipe, syrinx": 699,
|
| 1811 |
+
"paper towel": 700,
|
| 1812 |
+
"papillon": 157,
|
| 1813 |
+
"parachute, chute": 701,
|
| 1814 |
+
"parallel bars, bars": 702,
|
| 1815 |
+
"park bench": 703,
|
| 1816 |
+
"parking meter": 704,
|
| 1817 |
+
"partridge": 86,
|
| 1818 |
+
"passenger car, coach, carriage": 705,
|
| 1819 |
+
"patas, hussar monkey, Erythrocebus patas": 371,
|
| 1820 |
+
"patio, terrace": 706,
|
| 1821 |
+
"pay-phone, pay-station": 707,
|
| 1822 |
+
"peacock": 84,
|
| 1823 |
+
"pedestal, plinth, footstall": 708,
|
| 1824 |
+
"pelican": 144,
|
| 1825 |
+
"pencil box, pencil case": 709,
|
| 1826 |
+
"pencil sharpener": 710,
|
| 1827 |
+
"perfume, essence": 711,
|
| 1828 |
+
"photocopier": 713,
|
| 1829 |
+
"pick, plectrum, plectron": 714,
|
| 1830 |
+
"pickelhaube": 715,
|
| 1831 |
+
"picket fence, paling": 716,
|
| 1832 |
+
"pickup, pickup truck": 717,
|
| 1833 |
+
"pier": 718,
|
| 1834 |
+
"piggy bank, penny bank": 719,
|
| 1835 |
+
"pill bottle": 720,
|
| 1836 |
+
"pillow": 721,
|
| 1837 |
+
"pineapple, ananas": 953,
|
| 1838 |
+
"ping-pong ball": 722,
|
| 1839 |
+
"pinwheel": 723,
|
| 1840 |
+
"pirate, pirate ship": 724,
|
| 1841 |
+
"pitcher, ewer": 725,
|
| 1842 |
+
"pizza, pizza pie": 963,
|
| 1843 |
+
"plane, carpenter's plane, woodworking plane": 726,
|
| 1844 |
+
"planetarium": 727,
|
| 1845 |
+
"plastic bag": 728,
|
| 1846 |
+
"plate": 923,
|
| 1847 |
+
"plate rack": 729,
|
| 1848 |
+
"platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus": 103,
|
| 1849 |
+
"plow, plough": 730,
|
| 1850 |
+
"plunger, plumber's helper": 731,
|
| 1851 |
+
"pole": 733,
|
| 1852 |
+
"polecat, fitch, foulmart, foumart, Mustela putorius": 358,
|
| 1853 |
+
"police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria": 734,
|
| 1854 |
+
"pomegranate": 957,
|
| 1855 |
+
"poncho": 735,
|
| 1856 |
+
"pool table, billiard table, snooker table": 736,
|
| 1857 |
+
"pop bottle, soda bottle": 737,
|
| 1858 |
+
"porcupine, hedgehog": 334,
|
| 1859 |
+
"pot, flowerpot": 738,
|
| 1860 |
+
"potpie": 964,
|
| 1861 |
+
"potter's wheel": 739,
|
| 1862 |
+
"power drill": 740,
|
| 1863 |
+
"prairie chicken, prairie grouse, prairie fowl": 83,
|
| 1864 |
+
"prayer rug, prayer mat": 741,
|
| 1865 |
+
"pretzel": 932,
|
| 1866 |
+
"printer": 742,
|
| 1867 |
+
"prison, prison house": 743,
|
| 1868 |
+
"proboscis monkey, Nasalis larvatus": 376,
|
| 1869 |
+
"projectile, missile": 744,
|
| 1870 |
+
"projector": 745,
|
| 1871 |
+
"promontory, headland, head, foreland": 976,
|
| 1872 |
+
"ptarmigan": 81,
|
| 1873 |
+
"puck, hockey puck": 746,
|
| 1874 |
+
"puffer, pufferfish, blowfish, globefish": 397,
|
| 1875 |
+
"pug, pug-dog": 254,
|
| 1876 |
+
"punching bag, punch bag, punching ball, punchball": 747,
|
| 1877 |
+
"purse": 748,
|
| 1878 |
+
"quail": 85,
|
| 1879 |
+
"quill, quill pen": 749,
|
| 1880 |
+
"quilt, comforter, comfort, puff": 750,
|
| 1881 |
+
"racer, race car, racing car": 751,
|
| 1882 |
+
"racket, racquet": 752,
|
| 1883 |
+
"radiator": 753,
|
| 1884 |
+
"radio telescope, radio reflector": 755,
|
| 1885 |
+
"radio, wireless": 754,
|
| 1886 |
+
"rain barrel": 756,
|
| 1887 |
+
"ram, tup": 348,
|
| 1888 |
+
"rapeseed": 984,
|
| 1889 |
+
"recreational vehicle, RV, R.V.": 757,
|
| 1890 |
+
"red fox, Vulpes vulpes": 277,
|
| 1891 |
+
"red wine": 966,
|
| 1892 |
+
"red wolf, maned wolf, Canis rufus, Canis niger": 271,
|
| 1893 |
+
"red-backed sandpiper, dunlin, Erolia alpina": 140,
|
| 1894 |
+
"red-breasted merganser, Mergus serrator": 98,
|
| 1895 |
+
"redbone": 168,
|
| 1896 |
+
"redshank, Tringa totanus": 141,
|
| 1897 |
+
"reel": 758,
|
| 1898 |
+
"reflex camera": 759,
|
| 1899 |
+
"refrigerator, icebox": 760,
|
| 1900 |
+
"remote control, remote": 761,
|
| 1901 |
+
"restaurant, eating house, eating place, eatery": 762,
|
| 1902 |
+
"revolver, six-gun, six-shooter": 763,
|
| 1903 |
+
"rhinoceros beetle": 306,
|
| 1904 |
+
"rifle": 764,
|
| 1905 |
+
"ringlet, ringlet butterfly": 322,
|
| 1906 |
+
"ringneck snake, ring-necked snake, ring snake": 53,
|
| 1907 |
+
"robin, American robin, Turdus migratorius": 15,
|
| 1908 |
+
"rock beauty, Holocanthus tricolor": 392,
|
| 1909 |
+
"rock crab, Cancer irroratus": 119,
|
| 1910 |
+
"rock python, rock snake, Python sebae": 62,
|
| 1911 |
+
"rocking chair, rocker": 765,
|
| 1912 |
+
"rotisserie": 766,
|
| 1913 |
+
"rubber eraser, rubber, pencil eraser": 767,
|
| 1914 |
+
"ruddy turnstone, Arenaria interpres": 139,
|
| 1915 |
+
"ruffed grouse, partridge, Bonasa umbellus": 82,
|
| 1916 |
+
"rugby ball": 768,
|
| 1917 |
+
"rule, ruler": 769,
|
| 1918 |
+
"running shoe": 770,
|
| 1919 |
+
"safe": 771,
|
| 1920 |
+
"safety pin": 772,
|
| 1921 |
+
"saltshaker, salt shaker": 773,
|
| 1922 |
+
"sandal": 774,
|
| 1923 |
+
"sandbar, sand bar": 977,
|
| 1924 |
+
"sarong": 775,
|
| 1925 |
+
"sax, saxophone": 776,
|
| 1926 |
+
"scabbard": 777,
|
| 1927 |
+
"scale, weighing machine": 778,
|
| 1928 |
+
"schipperke": 223,
|
| 1929 |
+
"school bus": 779,
|
| 1930 |
+
"schooner": 780,
|
| 1931 |
+
"scoreboard": 781,
|
| 1932 |
+
"scorpion": 71,
|
| 1933 |
+
"screen, CRT screen": 782,
|
| 1934 |
+
"screw": 783,
|
| 1935 |
+
"screwdriver": 784,
|
| 1936 |
+
"scuba diver": 983,
|
| 1937 |
+
"sea anemone, anemone": 108,
|
| 1938 |
+
"sea cucumber, holothurian": 329,
|
| 1939 |
+
"sea lion": 150,
|
| 1940 |
+
"sea slug, nudibranch": 115,
|
| 1941 |
+
"sea snake": 65,
|
| 1942 |
+
"sea urchin": 328,
|
| 1943 |
+
"seashore, coast, seacoast, sea-coast": 978,
|
| 1944 |
+
"seat belt, seatbelt": 785,
|
| 1945 |
+
"sewing machine": 786,
|
| 1946 |
+
"shield, buckler": 787,
|
| 1947 |
+
"shoe shop, shoe-shop, shoe store": 788,
|
| 1948 |
+
"shoji": 789,
|
| 1949 |
+
"shopping basket": 790,
|
| 1950 |
+
"shopping cart": 791,
|
| 1951 |
+
"shovel": 792,
|
| 1952 |
+
"shower cap": 793,
|
| 1953 |
+
"shower curtain": 794,
|
| 1954 |
+
"siamang, Hylobates syndactylus, Symphalangus syndactylus": 369,
|
| 1955 |
+
"sidewinder, horned rattlesnake, Crotalus cerastes": 68,
|
| 1956 |
+
"silky terrier, Sydney silky": 201,
|
| 1957 |
+
"ski": 795,
|
| 1958 |
+
"ski mask": 796,
|
| 1959 |
+
"skunk, polecat, wood pussy": 361,
|
| 1960 |
+
"sleeping bag": 797,
|
| 1961 |
+
"slide rule, slipstick": 798,
|
| 1962 |
+
"sliding door": 799,
|
| 1963 |
+
"slot, one-armed bandit": 800,
|
| 1964 |
+
"sloth bear, Melursus ursinus, Ursus ursinus": 297,
|
| 1965 |
+
"slug": 114,
|
| 1966 |
+
"snail": 113,
|
| 1967 |
+
"snorkel": 801,
|
| 1968 |
+
"snow leopard, ounce, Panthera uncia": 289,
|
| 1969 |
+
"snowmobile": 802,
|
| 1970 |
+
"snowplow, snowplough": 803,
|
| 1971 |
+
"soap dispenser": 804,
|
| 1972 |
+
"soccer ball": 805,
|
| 1973 |
+
"sock": 806,
|
| 1974 |
+
"soft-coated wheaten terrier": 202,
|
| 1975 |
+
"solar dish, solar collector, solar furnace": 807,
|
| 1976 |
+
"sombrero": 808,
|
| 1977 |
+
"sorrel": 339,
|
| 1978 |
+
"soup bowl": 809,
|
| 1979 |
+
"space bar": 810,
|
| 1980 |
+
"space heater": 811,
|
| 1981 |
+
"space shuttle": 812,
|
| 1982 |
+
"spaghetti squash": 940,
|
| 1983 |
+
"spatula": 813,
|
| 1984 |
+
"speedboat": 814,
|
| 1985 |
+
"spider monkey, Ateles geoffroyi": 381,
|
| 1986 |
+
"spider web, spider's web": 815,
|
| 1987 |
+
"spindle": 816,
|
| 1988 |
+
"spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish": 123,
|
| 1989 |
+
"spoonbill": 129,
|
| 1990 |
+
"sports car, sport car": 817,
|
| 1991 |
+
"spotlight, spot": 818,
|
| 1992 |
+
"spotted salamander, Ambystoma maculatum": 28,
|
| 1993 |
+
"squirrel monkey, Saimiri sciureus": 382,
|
| 1994 |
+
"stage": 819,
|
| 1995 |
+
"standard poodle": 267,
|
| 1996 |
+
"standard schnauzer": 198,
|
| 1997 |
+
"starfish, sea star": 327,
|
| 1998 |
+
"steam locomotive": 820,
|
| 1999 |
+
"steel arch bridge": 821,
|
| 2000 |
+
"steel drum": 822,
|
| 2001 |
+
"stethoscope": 823,
|
| 2002 |
+
"stingray": 6,
|
| 2003 |
+
"stinkhorn, carrion fungus": 994,
|
| 2004 |
+
"stole": 824,
|
| 2005 |
+
"stone wall": 825,
|
| 2006 |
+
"stopwatch, stop watch": 826,
|
| 2007 |
+
"stove": 827,
|
| 2008 |
+
"strainer": 828,
|
| 2009 |
+
"strawberry": 949,
|
| 2010 |
+
"street sign": 919,
|
| 2011 |
+
"streetcar, tram, tramcar, trolley, trolley car": 829,
|
| 2012 |
+
"stretcher": 830,
|
| 2013 |
+
"studio couch, day bed": 831,
|
| 2014 |
+
"stupa, tope": 832,
|
| 2015 |
+
"sturgeon": 394,
|
| 2016 |
+
"submarine, pigboat, sub, U-boat": 833,
|
| 2017 |
+
"suit, suit of clothes": 834,
|
| 2018 |
+
"sulphur butterfly, sulfur butterfly": 325,
|
| 2019 |
+
"sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita": 89,
|
| 2020 |
+
"sundial": 835,
|
| 2021 |
+
"sunglass": 836,
|
| 2022 |
+
"sunglasses, dark glasses, shades": 837,
|
| 2023 |
+
"sunscreen, sunblock, sun blocker": 838,
|
| 2024 |
+
"suspension bridge": 839,
|
| 2025 |
+
"swab, swob, mop": 840,
|
| 2026 |
+
"sweatshirt": 841,
|
| 2027 |
+
"swimming trunks, bathing trunks": 842,
|
| 2028 |
+
"swing": 843,
|
| 2029 |
+
"switch, electric switch, electrical switch": 844,
|
| 2030 |
+
"syringe": 845,
|
| 2031 |
+
"tabby, tabby cat": 281,
|
| 2032 |
+
"table lamp": 846,
|
| 2033 |
+
"tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui": 32,
|
| 2034 |
+
"tank, army tank, armored combat vehicle, armoured combat vehicle": 847,
|
| 2035 |
+
"tape player": 848,
|
| 2036 |
+
"tarantula": 76,
|
| 2037 |
+
"teapot": 849,
|
| 2038 |
+
"teddy, teddy bear": 850,
|
| 2039 |
+
"television, television system": 851,
|
| 2040 |
+
"tench, Tinca tinca": 0,
|
| 2041 |
+
"tennis ball": 852,
|
| 2042 |
+
"terrapin": 36,
|
| 2043 |
+
"thatch, thatched roof": 853,
|
| 2044 |
+
"theater curtain, theatre curtain": 854,
|
| 2045 |
+
"thimble": 855,
|
| 2046 |
+
"three-toed sloth, ai, Bradypus tridactylus": 364,
|
| 2047 |
+
"thresher, thrasher, threshing machine": 856,
|
| 2048 |
+
"throne": 857,
|
| 2049 |
+
"thunder snake, worm snake, Carphophis amoenus": 52,
|
| 2050 |
+
"tick": 78,
|
| 2051 |
+
"tiger beetle": 300,
|
| 2052 |
+
"tiger cat": 282,
|
| 2053 |
+
"tiger shark, Galeocerdo cuvieri": 3,
|
| 2054 |
+
"tiger, Panthera tigris": 292,
|
| 2055 |
+
"tile roof": 858,
|
| 2056 |
+
"timber wolf, grey wolf, gray wolf, Canis lupus": 269,
|
| 2057 |
+
"titi, titi monkey": 380,
|
| 2058 |
+
"toaster": 859,
|
| 2059 |
+
"tobacco shop, tobacconist shop, tobacconist": 860,
|
| 2060 |
+
"toilet seat": 861,
|
| 2061 |
+
"toilet tissue, toilet paper, bathroom tissue": 999,
|
| 2062 |
+
"torch": 862,
|
| 2063 |
+
"totem pole": 863,
|
| 2064 |
+
"toucan": 96,
|
| 2065 |
+
"tow truck, tow car, wrecker": 864,
|
| 2066 |
+
"toy poodle": 265,
|
| 2067 |
+
"toy terrier": 158,
|
| 2068 |
+
"toyshop": 865,
|
| 2069 |
+
"tractor": 866,
|
| 2070 |
+
"traffic light, traffic signal, stoplight": 920,
|
| 2071 |
+
"trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi": 867,
|
| 2072 |
+
"tray": 868,
|
| 2073 |
+
"tree frog, tree-frog": 31,
|
| 2074 |
+
"trench coat": 869,
|
| 2075 |
+
"triceratops": 51,
|
| 2076 |
+
"tricycle, trike, velocipede": 870,
|
| 2077 |
+
"trifle": 927,
|
| 2078 |
+
"trilobite": 69,
|
| 2079 |
+
"trimaran": 871,
|
| 2080 |
+
"tripod": 872,
|
| 2081 |
+
"triumphal arch": 873,
|
| 2082 |
+
"trolleybus, trolley coach, trackless trolley": 874,
|
| 2083 |
+
"trombone": 875,
|
| 2084 |
+
"tub, vat": 876,
|
| 2085 |
+
"turnstile": 877,
|
| 2086 |
+
"tusker": 101,
|
| 2087 |
+
"typewriter keyboard": 878,
|
| 2088 |
+
"umbrella": 879,
|
| 2089 |
+
"unicycle, monocycle": 880,
|
| 2090 |
+
"upright, upright piano": 881,
|
| 2091 |
+
"vacuum, vacuum cleaner": 882,
|
| 2092 |
+
"valley, vale": 979,
|
| 2093 |
+
"vase": 883,
|
| 2094 |
+
"vault": 884,
|
| 2095 |
+
"velvet": 885,
|
| 2096 |
+
"vending machine": 886,
|
| 2097 |
+
"vestment": 887,
|
| 2098 |
+
"viaduct": 888,
|
| 2099 |
+
"vine snake": 59,
|
| 2100 |
+
"violin, fiddle": 889,
|
| 2101 |
+
"vizsla, Hungarian pointer": 211,
|
| 2102 |
+
"volcano": 980,
|
| 2103 |
+
"volleyball": 890,
|
| 2104 |
+
"vulture": 23,
|
| 2105 |
+
"waffle iron": 891,
|
| 2106 |
+
"walking stick, walkingstick, stick insect": 313,
|
| 2107 |
+
"wall clock": 892,
|
| 2108 |
+
"wallaby, brush kangaroo": 104,
|
| 2109 |
+
"wallet, billfold, notecase, pocketbook": 893,
|
| 2110 |
+
"wardrobe, closet, press": 894,
|
| 2111 |
+
"warplane, military plane": 895,
|
| 2112 |
+
"warthog": 343,
|
| 2113 |
+
"washbasin, handbasin, washbowl, lavabo, wash-hand basin": 896,
|
| 2114 |
+
"washer, automatic washer, washing machine": 897,
|
| 2115 |
+
"water bottle": 898,
|
| 2116 |
+
"water buffalo, water ox, Asiatic buffalo, Bubalus bubalis": 346,
|
| 2117 |
+
"water jug": 899,
|
| 2118 |
+
"water ouzel, dipper": 20,
|
| 2119 |
+
"water snake": 58,
|
| 2120 |
+
"water tower": 900,
|
| 2121 |
+
"weasel": 356,
|
| 2122 |
+
"web site, website, internet site, site": 916,
|
| 2123 |
+
"weevil": 307,
|
| 2124 |
+
"whippet": 172,
|
| 2125 |
+
"whiptail, whiptail lizard": 41,
|
| 2126 |
+
"whiskey jug": 901,
|
| 2127 |
+
"whistle": 902,
|
| 2128 |
+
"white stork, Ciconia ciconia": 127,
|
| 2129 |
+
"white wolf, Arctic wolf, Canis lupus tundrarum": 270,
|
| 2130 |
+
"wig": 903,
|
| 2131 |
+
"wild boar, boar, Sus scrofa": 342,
|
| 2132 |
+
"window screen": 904,
|
| 2133 |
+
"window shade": 905,
|
| 2134 |
+
"wine bottle": 907,
|
| 2135 |
+
"wing": 908,
|
| 2136 |
+
"wire-haired fox terrier": 188,
|
| 2137 |
+
"wok": 909,
|
| 2138 |
+
"wolf spider, hunting spider": 77,
|
| 2139 |
+
"wombat": 106,
|
| 2140 |
+
"wood rabbit, cottontail, cottontail rabbit": 330,
|
| 2141 |
+
"wooden spoon": 910,
|
| 2142 |
+
"wool, woolen, woollen": 911,
|
| 2143 |
+
"worm fence, snake fence, snake-rail fence, Virginia fence": 912,
|
| 2144 |
+
"wreck": 913,
|
| 2145 |
+
"yawl": 914,
|
| 2146 |
+
"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum": 986,
|
| 2147 |
+
"yurt": 915,
|
| 2148 |
+
"zebra": 340,
|
| 2149 |
+
"zucchini, courgette": 939
|
| 2150 |
+
},
|
| 2151 |
+
"layer_norm_eps": 1e-05,
|
| 2152 |
+
"length_penalty": 1.0,
|
| 2153 |
+
"max_length": 20,
|
| 2154 |
+
"min_length": 0,
|
| 2155 |
+
"mlp_ratio": 4.0,
|
| 2156 |
+
"model_type": "swin",
|
| 2157 |
+
"no_repeat_ngram_size": 0,
|
| 2158 |
+
"num_beam_groups": 1,
|
| 2159 |
+
"num_beams": 1,
|
| 2160 |
+
"num_channels": 3,
|
| 2161 |
+
"num_heads": [
|
| 2162 |
+
6,
|
| 2163 |
+
12,
|
| 2164 |
+
24,
|
| 2165 |
+
48
|
| 2166 |
+
],
|
| 2167 |
+
"num_layers": 4,
|
| 2168 |
+
"num_return_sequences": 1,
|
| 2169 |
+
"out_features": [
|
| 2170 |
+
"stage1",
|
| 2171 |
+
"stage2",
|
| 2172 |
+
"stage3",
|
| 2173 |
+
"stage4"
|
| 2174 |
+
],
|
| 2175 |
+
"out_indices": [
|
| 2176 |
+
1,
|
| 2177 |
+
2,
|
| 2178 |
+
3,
|
| 2179 |
+
4
|
| 2180 |
+
],
|
| 2181 |
+
"output_attentions": false,
|
| 2182 |
+
"output_hidden_states": false,
|
| 2183 |
+
"output_scores": false,
|
| 2184 |
+
"pad_token_id": null,
|
| 2185 |
+
"patch_size": 4,
|
| 2186 |
+
"path_norm": true,
|
| 2187 |
+
"prefix": null,
|
| 2188 |
+
"problem_type": null,
|
| 2189 |
+
"pruned_heads": {},
|
| 2190 |
+
"qkv_bias": true,
|
| 2191 |
+
"remove_invalid_values": false,
|
| 2192 |
+
"repetition_penalty": 1.0,
|
| 2193 |
+
"return_dict": true,
|
| 2194 |
+
"return_dict_in_generate": false,
|
| 2195 |
+
"sep_token_id": null,
|
| 2196 |
+
"stage_names": [
|
| 2197 |
+
"stem",
|
| 2198 |
+
"stage1",
|
| 2199 |
+
"stage2",
|
| 2200 |
+
"stage3",
|
| 2201 |
+
"stage4"
|
| 2202 |
+
],
|
| 2203 |
+
"suppress_tokens": null,
|
| 2204 |
+
"task_specific_params": null,
|
| 2205 |
+
"temperature": 1.0,
|
| 2206 |
+
"tf_legacy_loss": false,
|
| 2207 |
+
"tie_encoder_decoder": false,
|
| 2208 |
+
"tie_word_embeddings": true,
|
| 2209 |
+
"tokenizer_class": null,
|
| 2210 |
+
"top_k": 50,
|
| 2211 |
+
"top_p": 1.0,
|
| 2212 |
+
"torch_dtype": "float32",
|
| 2213 |
+
"torchscript": false,
|
| 2214 |
+
"typical_p": 1.0,
|
| 2215 |
+
"use_absolute_embeddings": false,
|
| 2216 |
+
"use_bfloat16": false,
|
| 2217 |
+
"window_size": 12
|
| 2218 |
+
},
|
| 2219 |
+
"backbone_kwargs": null,
|
| 2220 |
+
"bad_words_ids": null,
|
| 2221 |
+
"begin_suppress_tokens": null,
|
| 2222 |
+
"bos_token_id": null,
|
| 2223 |
+
"chunk_size_feed_forward": 0,
|
| 2224 |
+
"class_weight": 2.0,
|
| 2225 |
+
"common_stride": 4,
|
| 2226 |
+
"cross_attention_hidden_size": null,
|
| 2227 |
+
"decoder_layers": 10,
|
| 2228 |
+
"decoder_start_token_id": null,
|
| 2229 |
+
"dice_weight": 5.0,
|
| 2230 |
+
"dim_feedforward": 2048,
|
| 2231 |
+
"diversity_penalty": 0.0,
|
| 2232 |
+
"do_sample": false,
|
| 2233 |
+
"dropout": 0.0,
|
| 2234 |
+
"early_stopping": false,
|
| 2235 |
+
"encoder_feedforward_dim": 1024,
|
| 2236 |
+
"encoder_layers": 6,
|
| 2237 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 2238 |
+
"enforce_input_proj": false,
|
| 2239 |
+
"enforce_input_projection": false,
|
| 2240 |
+
"eos_token_id": null,
|
| 2241 |
+
"exponential_decay_length_penalty": null,
|
| 2242 |
+
"feature_size": 256,
|
| 2243 |
+
"feature_strides": [
|
| 2244 |
+
4,
|
| 2245 |
+
8,
|
| 2246 |
+
16,
|
| 2247 |
+
32
|
| 2248 |
+
],
|
| 2249 |
+
"finetuning_task": null,
|
| 2250 |
+
"forced_bos_token_id": null,
|
| 2251 |
+
"forced_eos_token_id": null,
|
| 2252 |
+
"hidden_dim": 256,
|
| 2253 |
+
"id2label": {
|
| 2254 |
+
"0": "person",
|
| 2255 |
+
"1": "bicycle",
|
| 2256 |
+
"2": "car",
|
| 2257 |
+
"3": "motorcycle",
|
| 2258 |
+
"4": "airplane",
|
| 2259 |
+
"5": "bus",
|
| 2260 |
+
"6": "train",
|
| 2261 |
+
"7": "truck",
|
| 2262 |
+
"8": "boat",
|
| 2263 |
+
"9": "traffic light",
|
| 2264 |
+
"10": "fire hydrant",
|
| 2265 |
+
"11": "stop sign",
|
| 2266 |
+
"12": "parking meter",
|
| 2267 |
+
"13": "bench",
|
| 2268 |
+
"14": "bird",
|
| 2269 |
+
"15": "cat",
|
| 2270 |
+
"16": "dog",
|
| 2271 |
+
"17": "horse",
|
| 2272 |
+
"18": "sheep",
|
| 2273 |
+
"19": "cow",
|
| 2274 |
+
"20": "elephant",
|
| 2275 |
+
"21": "bear",
|
| 2276 |
+
"22": "zebra",
|
| 2277 |
+
"23": "giraffe",
|
| 2278 |
+
"24": "backpack",
|
| 2279 |
+
"25": "umbrella",
|
| 2280 |
+
"26": "handbag",
|
| 2281 |
+
"27": "tie",
|
| 2282 |
+
"28": "suitcase",
|
| 2283 |
+
"29": "frisbee",
|
| 2284 |
+
"30": "skis",
|
| 2285 |
+
"31": "snowboard",
|
| 2286 |
+
"32": "sports ball",
|
| 2287 |
+
"33": "kite",
|
| 2288 |
+
"34": "baseball bat",
|
| 2289 |
+
"35": "baseball glove",
|
| 2290 |
+
"36": "skateboard",
|
| 2291 |
+
"37": "surfboard",
|
| 2292 |
+
"38": "tennis racket",
|
| 2293 |
+
"39": "bottle",
|
| 2294 |
+
"40": "wine glass",
|
| 2295 |
+
"41": "cup",
|
| 2296 |
+
"42": "fork",
|
| 2297 |
+
"43": "knife",
|
| 2298 |
+
"44": "spoon",
|
| 2299 |
+
"45": "bowl",
|
| 2300 |
+
"46": "banana",
|
| 2301 |
+
"47": "apple",
|
| 2302 |
+
"48": "sandwich",
|
| 2303 |
+
"49": "orange",
|
| 2304 |
+
"50": "broccoli",
|
| 2305 |
+
"51": "carrot",
|
| 2306 |
+
"52": "hot dog",
|
| 2307 |
+
"53": "pizza",
|
| 2308 |
+
"54": "donut",
|
| 2309 |
+
"55": "cake",
|
| 2310 |
+
"56": "chair",
|
| 2311 |
+
"57": "couch",
|
| 2312 |
+
"58": "potted plant",
|
| 2313 |
+
"59": "bed",
|
| 2314 |
+
"60": "dining table",
|
| 2315 |
+
"61": "toilet",
|
| 2316 |
+
"62": "tv",
|
| 2317 |
+
"63": "laptop",
|
| 2318 |
+
"64": "mouse",
|
| 2319 |
+
"65": "remote",
|
| 2320 |
+
"66": "keyboard",
|
| 2321 |
+
"67": "cell phone",
|
| 2322 |
+
"68": "microwave",
|
| 2323 |
+
"69": "oven",
|
| 2324 |
+
"70": "toaster",
|
| 2325 |
+
"71": "sink",
|
| 2326 |
+
"72": "refrigerator",
|
| 2327 |
+
"73": "book",
|
| 2328 |
+
"74": "clock",
|
| 2329 |
+
"75": "vase",
|
| 2330 |
+
"76": "scissors",
|
| 2331 |
+
"77": "teddy bear",
|
| 2332 |
+
"78": "hair drier",
|
| 2333 |
+
"79": "toothbrush",
|
| 2334 |
+
"80": "banner",
|
| 2335 |
+
"81": "blanket",
|
| 2336 |
+
"82": "bridge",
|
| 2337 |
+
"83": "cardboard",
|
| 2338 |
+
"84": "counter",
|
| 2339 |
+
"85": "curtain",
|
| 2340 |
+
"86": "door-stuff",
|
| 2341 |
+
"87": "floor-wood",
|
| 2342 |
+
"88": "flower",
|
| 2343 |
+
"89": "fruit",
|
| 2344 |
+
"90": "gravel",
|
| 2345 |
+
"91": "house",
|
| 2346 |
+
"92": "light",
|
| 2347 |
+
"93": "mirror-stuff",
|
| 2348 |
+
"94": "net",
|
| 2349 |
+
"95": "pillow",
|
| 2350 |
+
"96": "platform",
|
| 2351 |
+
"97": "playingfield",
|
| 2352 |
+
"98": "railroad",
|
| 2353 |
+
"99": "river",
|
| 2354 |
+
"100": "road",
|
| 2355 |
+
"101": "roof",
|
| 2356 |
+
"102": "sand",
|
| 2357 |
+
"103": "sea",
|
| 2358 |
+
"104": "shelf",
|
| 2359 |
+
"105": "snow",
|
| 2360 |
+
"106": "stairs",
|
| 2361 |
+
"107": "tent",
|
| 2362 |
+
"108": "towel",
|
| 2363 |
+
"109": "wall-brick",
|
| 2364 |
+
"110": "wall-stone",
|
| 2365 |
+
"111": "wall-tile",
|
| 2366 |
+
"112": "wall-wood",
|
| 2367 |
+
"113": "water-other",
|
| 2368 |
+
"114": "window-blind",
|
| 2369 |
+
"115": "window-other",
|
| 2370 |
+
"116": "tree-merged",
|
| 2371 |
+
"117": "fence-merged",
|
| 2372 |
+
"118": "ceiling-merged",
|
| 2373 |
+
"119": "sky-other-merged",
|
| 2374 |
+
"120": "cabinet-merged",
|
| 2375 |
+
"121": "table-merged",
|
| 2376 |
+
"122": "floor-other-merged",
|
| 2377 |
+
"123": "pavement-merged",
|
| 2378 |
+
"124": "mountain-merged",
|
| 2379 |
+
"125": "grass-merged",
|
| 2380 |
+
"126": "dirt-merged",
|
| 2381 |
+
"127": "paper-merged",
|
| 2382 |
+
"128": "food-other-merged",
|
| 2383 |
+
"129": "building-other-merged",
|
| 2384 |
+
"130": "rock-merged",
|
| 2385 |
+
"131": "wall-other-merged",
|
| 2386 |
+
"132": "rug-merged"
|
| 2387 |
+
},
|
| 2388 |
+
"ignore_value": 255,
|
| 2389 |
+
"importance_sample_ratio": 0.75,
|
| 2390 |
+
"init_std": 0.02,
|
| 2391 |
+
"init_xavier_std": 1.0,
|
| 2392 |
+
"is_decoder": false,
|
| 2393 |
+
"is_encoder_decoder": false,
|
| 2394 |
+
"label2id": {
|
| 2395 |
+
"airplane": 4,
|
| 2396 |
+
"apple": 47,
|
| 2397 |
+
"backpack": 24,
|
| 2398 |
+
"banana": 46,
|
| 2399 |
+
"banner": 80,
|
| 2400 |
+
"baseball bat": 34,
|
| 2401 |
+
"baseball glove": 35,
|
| 2402 |
+
"bear": 21,
|
| 2403 |
+
"bed": 59,
|
| 2404 |
+
"bench": 13,
|
| 2405 |
+
"bicycle": 1,
|
| 2406 |
+
"bird": 14,
|
| 2407 |
+
"blanket": 81,
|
| 2408 |
+
"boat": 8,
|
| 2409 |
+
"book": 73,
|
| 2410 |
+
"bottle": 39,
|
| 2411 |
+
"bowl": 45,
|
| 2412 |
+
"bridge": 82,
|
| 2413 |
+
"broccoli": 50,
|
| 2414 |
+
"building-other-merged": 129,
|
| 2415 |
+
"bus": 5,
|
| 2416 |
+
"cabinet-merged": 120,
|
| 2417 |
+
"cake": 55,
|
| 2418 |
+
"car": 2,
|
| 2419 |
+
"cardboard": 83,
|
| 2420 |
+
"carrot": 51,
|
| 2421 |
+
"cat": 15,
|
| 2422 |
+
"ceiling-merged": 118,
|
| 2423 |
+
"cell phone": 67,
|
| 2424 |
+
"chair": 56,
|
| 2425 |
+
"clock": 74,
|
| 2426 |
+
"couch": 57,
|
| 2427 |
+
"counter": 84,
|
| 2428 |
+
"cow": 19,
|
| 2429 |
+
"cup": 41,
|
| 2430 |
+
"curtain": 85,
|
| 2431 |
+
"dining table": 60,
|
| 2432 |
+
"dirt-merged": 126,
|
| 2433 |
+
"dog": 16,
|
| 2434 |
+
"donut": 54,
|
| 2435 |
+
"door-stuff": 86,
|
| 2436 |
+
"elephant": 20,
|
| 2437 |
+
"fence-merged": 117,
|
| 2438 |
+
"fire hydrant": 10,
|
| 2439 |
+
"floor-other-merged": 122,
|
| 2440 |
+
"floor-wood": 87,
|
| 2441 |
+
"flower": 88,
|
| 2442 |
+
"food-other-merged": 128,
|
| 2443 |
+
"fork": 42,
|
| 2444 |
+
"frisbee": 29,
|
| 2445 |
+
"fruit": 89,
|
| 2446 |
+
"giraffe": 23,
|
| 2447 |
+
"grass-merged": 125,
|
| 2448 |
+
"gravel": 90,
|
| 2449 |
+
"hair drier": 78,
|
| 2450 |
+
"handbag": 26,
|
| 2451 |
+
"horse": 17,
|
| 2452 |
+
"hot dog": 52,
|
| 2453 |
+
"house": 91,
|
| 2454 |
+
"keyboard": 66,
|
| 2455 |
+
"kite": 33,
|
| 2456 |
+
"knife": 43,
|
| 2457 |
+
"laptop": 63,
|
| 2458 |
+
"light": 92,
|
| 2459 |
+
"microwave": 68,
|
| 2460 |
+
"mirror-stuff": 93,
|
| 2461 |
+
"motorcycle": 3,
|
| 2462 |
+
"mountain-merged": 124,
|
| 2463 |
+
"mouse": 64,
|
| 2464 |
+
"net": 94,
|
| 2465 |
+
"orange": 49,
|
| 2466 |
+
"oven": 69,
|
| 2467 |
+
"paper-merged": 127,
|
| 2468 |
+
"parking meter": 12,
|
| 2469 |
+
"pavement-merged": 123,
|
| 2470 |
+
"person": 0,
|
| 2471 |
+
"pillow": 95,
|
| 2472 |
+
"pizza": 53,
|
| 2473 |
+
"platform": 96,
|
| 2474 |
+
"playingfield": 97,
|
| 2475 |
+
"potted plant": 58,
|
| 2476 |
+
"railroad": 98,
|
| 2477 |
+
"refrigerator": 72,
|
| 2478 |
+
"remote": 65,
|
| 2479 |
+
"river": 99,
|
| 2480 |
+
"road": 100,
|
| 2481 |
+
"rock-merged": 130,
|
| 2482 |
+
"roof": 101,
|
| 2483 |
+
"rug-merged": 132,
|
| 2484 |
+
"sand": 102,
|
| 2485 |
+
"sandwich": 48,
|
| 2486 |
+
"scissors": 76,
|
| 2487 |
+
"sea": 103,
|
| 2488 |
+
"sheep": 18,
|
| 2489 |
+
"shelf": 104,
|
| 2490 |
+
"sink": 71,
|
| 2491 |
+
"skateboard": 36,
|
| 2492 |
+
"skis": 30,
|
| 2493 |
+
"sky-other-merged": 119,
|
| 2494 |
+
"snow": 105,
|
| 2495 |
+
"snowboard": 31,
|
| 2496 |
+
"spoon": 44,
|
| 2497 |
+
"sports ball": 32,
|
| 2498 |
+
"stairs": 106,
|
| 2499 |
+
"stop sign": 11,
|
| 2500 |
+
"suitcase": 28,
|
| 2501 |
+
"surfboard": 37,
|
| 2502 |
+
"table-merged": 121,
|
| 2503 |
+
"teddy bear": 77,
|
| 2504 |
+
"tennis racket": 38,
|
| 2505 |
+
"tent": 107,
|
| 2506 |
+
"tie": 27,
|
| 2507 |
+
"toaster": 70,
|
| 2508 |
+
"toilet": 61,
|
| 2509 |
+
"toothbrush": 79,
|
| 2510 |
+
"towel": 108,
|
| 2511 |
+
"traffic light": 9,
|
| 2512 |
+
"train": 6,
|
| 2513 |
+
"tree-merged": 116,
|
| 2514 |
+
"truck": 7,
|
| 2515 |
+
"tv": 62,
|
| 2516 |
+
"umbrella": 25,
|
| 2517 |
+
"vase": 75,
|
| 2518 |
+
"wall-brick": 109,
|
| 2519 |
+
"wall-other-merged": 131,
|
| 2520 |
+
"wall-stone": 110,
|
| 2521 |
+
"wall-tile": 111,
|
| 2522 |
+
"wall-wood": 112,
|
| 2523 |
+
"water-other": 113,
|
| 2524 |
+
"window-blind": 114,
|
| 2525 |
+
"window-other": 115,
|
| 2526 |
+
"wine glass": 40,
|
| 2527 |
+
"zebra": 22
|
| 2528 |
+
},
|
| 2529 |
+
"length_penalty": 1.0,
|
| 2530 |
+
"mask_feature_size": 256,
|
| 2531 |
+
"mask_weight": 5.0,
|
| 2532 |
+
"max_length": 20,
|
| 2533 |
+
"min_length": 0,
|
| 2534 |
+
"model_type": "mask2former",
|
| 2535 |
+
"no_object_weight": 0.1,
|
| 2536 |
+
"no_repeat_ngram_size": 0,
|
| 2537 |
+
"num_attention_heads": 8,
|
| 2538 |
+
"num_beam_groups": 1,
|
| 2539 |
+
"num_beams": 1,
|
| 2540 |
+
"num_hidden_layers": 10,
|
| 2541 |
+
"num_queries": 200,
|
| 2542 |
+
"num_return_sequences": 1,
|
| 2543 |
+
"output_attentions": false,
|
| 2544 |
+
"output_auxiliary_logits": null,
|
| 2545 |
+
"output_hidden_states": false,
|
| 2546 |
+
"output_scores": false,
|
| 2547 |
+
"oversample_ratio": 3.0,
|
| 2548 |
+
"pad_token_id": null,
|
| 2549 |
+
"pre_norm": false,
|
| 2550 |
+
"prefix": null,
|
| 2551 |
+
"problem_type": null,
|
| 2552 |
+
"pruned_heads": {},
|
| 2553 |
+
"remove_invalid_values": false,
|
| 2554 |
+
"repetition_penalty": 1.0,
|
| 2555 |
+
"return_dict": true,
|
| 2556 |
+
"return_dict_in_generate": false,
|
| 2557 |
+
"sep_token_id": null,
|
| 2558 |
+
"suppress_tokens": null,
|
| 2559 |
+
"task_specific_params": null,
|
| 2560 |
+
"temperature": 1.0,
|
| 2561 |
+
"tf_legacy_loss": false,
|
| 2562 |
+
"tie_encoder_decoder": false,
|
| 2563 |
+
"tie_word_embeddings": true,
|
| 2564 |
+
"tokenizer_class": null,
|
| 2565 |
+
"top_k": 50,
|
| 2566 |
+
"top_p": 1.0,
|
| 2567 |
+
"torch_dtype": "float32",
|
| 2568 |
+
"torchscript": false,
|
| 2569 |
+
"train_num_points": 12544,
|
| 2570 |
+
"transformers_version": "4.47.0",
|
| 2571 |
+
"typical_p": 1.0,
|
| 2572 |
+
"use_auxiliary_loss": true,
|
| 2573 |
+
"use_bfloat16": false,
|
| 2574 |
+
"use_pretrained_backbone": false,
|
| 2575 |
+
"use_timm_backbone": false
|
| 2576 |
+
},
|
| 2577 |
+
"max_dynamic_patch": 12,
|
| 2578 |
+
"min_dynamic_patch": 1,
|
| 2579 |
+
"model_type": "sa2va_chat",
|
| 2580 |
+
"num_m2f_proposals": 100,
|
| 2581 |
+
"num_m2f_queries": 200,
|
| 2582 |
+
"pad2square": false,
|
| 2583 |
+
"ps_version": "v2",
|
| 2584 |
+
"select_layer": -1,
|
| 2585 |
+
"template": "internlm2_chat",
|
| 2586 |
+
"tie_word_embeddings": false,
|
| 2587 |
+
"torch_dtype": "bfloat16",
|
| 2588 |
+
"transformers_version": null,
|
| 2589 |
+
"use_backbone_lora": 0,
|
| 2590 |
+
"use_llm_lora": 0,
|
| 2591 |
+
"use_thumbnail": true,
|
| 2592 |
+
"vision_config": {
|
| 2593 |
+
"_attn_implementation_autoset": false,
|
| 2594 |
+
"_name_or_path": "",
|
| 2595 |
+
"add_cross_attention": false,
|
| 2596 |
+
"architectures": [
|
| 2597 |
+
"InternVisionModel"
|
| 2598 |
+
],
|
| 2599 |
+
"attention_dropout": 0.0,
|
| 2600 |
+
"bad_words_ids": null,
|
| 2601 |
+
"begin_suppress_tokens": null,
|
| 2602 |
+
"bos_token_id": null,
|
| 2603 |
+
"chunk_size_feed_forward": 0,
|
| 2604 |
+
"cross_attention_hidden_size": null,
|
| 2605 |
+
"decoder_start_token_id": null,
|
| 2606 |
+
"diversity_penalty": 0.0,
|
| 2607 |
+
"do_sample": false,
|
| 2608 |
+
"drop_path_rate": 0.0,
|
| 2609 |
+
"dropout": 0.0,
|
| 2610 |
+
"early_stopping": false,
|
| 2611 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 2612 |
+
"eos_token_id": null,
|
| 2613 |
+
"exponential_decay_length_penalty": null,
|
| 2614 |
+
"finetuning_task": null,
|
| 2615 |
+
"forced_bos_token_id": null,
|
| 2616 |
+
"forced_eos_token_id": null,
|
| 2617 |
+
"hidden_act": "gelu",
|
| 2618 |
+
"hidden_size": 1024,
|
| 2619 |
+
"id2label": {
|
| 2620 |
+
"0": "LABEL_0",
|
| 2621 |
+
"1": "LABEL_1"
|
| 2622 |
+
},
|
| 2623 |
+
"image_size": 448,
|
| 2624 |
+
"initializer_factor": 1.0,
|
| 2625 |
+
"initializer_range": 0.02,
|
| 2626 |
+
"intermediate_size": 4096,
|
| 2627 |
+
"is_decoder": false,
|
| 2628 |
+
"is_encoder_decoder": false,
|
| 2629 |
+
"label2id": {
|
| 2630 |
+
"LABEL_0": 0,
|
| 2631 |
+
"LABEL_1": 1
|
| 2632 |
+
},
|
| 2633 |
+
"layer_norm_eps": 1e-06,
|
| 2634 |
+
"length_penalty": 1.0,
|
| 2635 |
+
"max_length": 20,
|
| 2636 |
+
"min_length": 0,
|
| 2637 |
+
"model_type": "intern_vit_6b",
|
| 2638 |
+
"no_repeat_ngram_size": 0,
|
| 2639 |
+
"norm_type": "layer_norm",
|
| 2640 |
+
"num_attention_heads": 16,
|
| 2641 |
+
"num_beam_groups": 1,
|
| 2642 |
+
"num_beams": 1,
|
| 2643 |
+
"num_channels": 3,
|
| 2644 |
+
"num_hidden_layers": 24,
|
| 2645 |
+
"num_return_sequences": 1,
|
| 2646 |
+
"output_attentions": false,
|
| 2647 |
+
"output_hidden_states": false,
|
| 2648 |
+
"output_scores": false,
|
| 2649 |
+
"pad_token_id": null,
|
| 2650 |
+
"patch_size": 14,
|
| 2651 |
+
"prefix": null,
|
| 2652 |
+
"problem_type": null,
|
| 2653 |
+
"pruned_heads": {},
|
| 2654 |
+
"qk_normalization": false,
|
| 2655 |
+
"qkv_bias": true,
|
| 2656 |
+
"remove_invalid_values": false,
|
| 2657 |
+
"repetition_penalty": 1.0,
|
| 2658 |
+
"return_dict": true,
|
| 2659 |
+
"return_dict_in_generate": false,
|
| 2660 |
+
"sep_token_id": null,
|
| 2661 |
+
"suppress_tokens": null,
|
| 2662 |
+
"task_specific_params": null,
|
| 2663 |
+
"temperature": 1.0,
|
| 2664 |
+
"tf_legacy_loss": false,
|
| 2665 |
+
"tie_encoder_decoder": false,
|
| 2666 |
+
"tie_word_embeddings": true,
|
| 2667 |
+
"tokenizer_class": null,
|
| 2668 |
+
"top_k": 50,
|
| 2669 |
+
"top_p": 1.0,
|
| 2670 |
+
"torch_dtype": "bfloat16",
|
| 2671 |
+
"torchscript": false,
|
| 2672 |
+
"transformers_version": "4.47.0",
|
| 2673 |
+
"typical_p": 1.0,
|
| 2674 |
+
"use_bfloat16": true,
|
| 2675 |
+
"use_flash_attn": true
|
| 2676 |
+
}
|
| 2677 |
+
}
|
configuration_intern_vit.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from typing import Union
|
| 9 |
+
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.utils import logging
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class InternVisionConfig(PretrainedConfig):
|
| 17 |
+
r"""
|
| 18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
| 19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
| 20 |
+
|
| 21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 22 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
| 27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
| 28 |
+
The size (resolution) of each patch.
|
| 29 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 30 |
+
The size (resolution) of each image.
|
| 31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
| 32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
| 33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
| 34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
| 38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
| 40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
| 42 |
+
Number of hidden layers in the Transformer encoder.
|
| 43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
| 44 |
+
Whether to use flash attention mechanism.
|
| 45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
| 48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 49 |
+
The epsilon used by the layer normalization layers.
|
| 50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
| 53 |
+
Dropout rate for stochastic depth.
|
| 54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 55 |
+
The dropout ratio for the attention probabilities.
|
| 56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
| 59 |
+
A factor for layer scale.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
model_type = 'intern_vit_6b'
|
| 63 |
+
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
num_channels=3,
|
| 67 |
+
patch_size=14,
|
| 68 |
+
image_size=224,
|
| 69 |
+
qkv_bias=False,
|
| 70 |
+
hidden_size=3200,
|
| 71 |
+
num_attention_heads=25,
|
| 72 |
+
intermediate_size=12800,
|
| 73 |
+
qk_normalization=True,
|
| 74 |
+
num_hidden_layers=48,
|
| 75 |
+
use_flash_attn=True,
|
| 76 |
+
hidden_act='gelu',
|
| 77 |
+
norm_type='rms_norm',
|
| 78 |
+
layer_norm_eps=1e-6,
|
| 79 |
+
dropout=0.0,
|
| 80 |
+
drop_path_rate=0.0,
|
| 81 |
+
attention_dropout=0.0,
|
| 82 |
+
initializer_range=0.02,
|
| 83 |
+
initializer_factor=0.1,
|
| 84 |
+
**kwargs,
|
| 85 |
+
):
|
| 86 |
+
super().__init__(**kwargs)
|
| 87 |
+
|
| 88 |
+
self.hidden_size = hidden_size
|
| 89 |
+
self.intermediate_size = intermediate_size
|
| 90 |
+
self.dropout = dropout
|
| 91 |
+
self.drop_path_rate = drop_path_rate
|
| 92 |
+
self.num_hidden_layers = num_hidden_layers
|
| 93 |
+
self.num_attention_heads = num_attention_heads
|
| 94 |
+
self.num_channels = num_channels
|
| 95 |
+
self.patch_size = patch_size
|
| 96 |
+
self.image_size = image_size
|
| 97 |
+
self.initializer_range = initializer_range
|
| 98 |
+
self.initializer_factor = initializer_factor
|
| 99 |
+
self.attention_dropout = attention_dropout
|
| 100 |
+
self.layer_norm_eps = layer_norm_eps
|
| 101 |
+
self.hidden_act = hidden_act
|
| 102 |
+
self.norm_type = norm_type
|
| 103 |
+
self.qkv_bias = qkv_bias
|
| 104 |
+
self.qk_normalization = qk_normalization
|
| 105 |
+
self.use_flash_attn = use_flash_attn
|
| 106 |
+
|
| 107 |
+
@classmethod
|
| 108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
| 109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 110 |
+
|
| 111 |
+
if 'vision_config' in config_dict:
|
| 112 |
+
config_dict = config_dict['vision_config']
|
| 113 |
+
|
| 114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
| 115 |
+
logger.warning(
|
| 116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" InternLM2 model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
| 27 |
+
class InternLM2Config(PretrainedConfig):
|
| 28 |
+
r"""
|
| 29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
| 30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
| 31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
| 32 |
+
|
| 33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 34 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
| 40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
| 41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 42 |
+
Dimension of the hidden representations.
|
| 43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 44 |
+
Dimension of the MLP representations.
|
| 45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of hidden layers in the Transformer encoder.
|
| 47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 49 |
+
num_key_value_heads (`int`, *optional*):
|
| 50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 56 |
+
`num_attention_heads`.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the decoder.
|
| 59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 65 |
+
The epsilon used by the rms normalization layers.
|
| 66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 68 |
+
relevant if `config.is_decoder=True`.
|
| 69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
| 70 |
+
Whether to tie weight embeddings
|
| 71 |
+
Example:
|
| 72 |
+
|
| 73 |
+
"""
|
| 74 |
+
model_type = 'internlm2'
|
| 75 |
+
_auto_class = 'AutoConfig'
|
| 76 |
+
|
| 77 |
+
def __init__( # pylint: disable=W0102
|
| 78 |
+
self,
|
| 79 |
+
vocab_size=103168,
|
| 80 |
+
hidden_size=4096,
|
| 81 |
+
intermediate_size=11008,
|
| 82 |
+
num_hidden_layers=32,
|
| 83 |
+
num_attention_heads=32,
|
| 84 |
+
num_key_value_heads=None,
|
| 85 |
+
hidden_act='silu',
|
| 86 |
+
max_position_embeddings=2048,
|
| 87 |
+
initializer_range=0.02,
|
| 88 |
+
rms_norm_eps=1e-6,
|
| 89 |
+
use_cache=True,
|
| 90 |
+
pad_token_id=0,
|
| 91 |
+
bos_token_id=1,
|
| 92 |
+
eos_token_id=2,
|
| 93 |
+
tie_word_embeddings=False,
|
| 94 |
+
bias=True,
|
| 95 |
+
rope_theta=10000,
|
| 96 |
+
rope_scaling=None,
|
| 97 |
+
attn_implementation='eager',
|
| 98 |
+
**kwargs,
|
| 99 |
+
):
|
| 100 |
+
self.vocab_size = vocab_size
|
| 101 |
+
self.max_position_embeddings = max_position_embeddings
|
| 102 |
+
self.hidden_size = hidden_size
|
| 103 |
+
self.intermediate_size = intermediate_size
|
| 104 |
+
self.num_hidden_layers = num_hidden_layers
|
| 105 |
+
self.num_attention_heads = num_attention_heads
|
| 106 |
+
self.bias = bias
|
| 107 |
+
|
| 108 |
+
if num_key_value_heads is None:
|
| 109 |
+
num_key_value_heads = num_attention_heads
|
| 110 |
+
self.num_key_value_heads = num_key_value_heads
|
| 111 |
+
|
| 112 |
+
self.hidden_act = hidden_act
|
| 113 |
+
self.initializer_range = initializer_range
|
| 114 |
+
self.rms_norm_eps = rms_norm_eps
|
| 115 |
+
self.use_cache = use_cache
|
| 116 |
+
self.rope_theta = rope_theta
|
| 117 |
+
self.rope_scaling = rope_scaling
|
| 118 |
+
self._rope_scaling_validation()
|
| 119 |
+
|
| 120 |
+
self.attn_implementation = attn_implementation
|
| 121 |
+
if self.attn_implementation is None:
|
| 122 |
+
self.attn_implementation = 'eager'
|
| 123 |
+
super().__init__(
|
| 124 |
+
pad_token_id=pad_token_id,
|
| 125 |
+
bos_token_id=bos_token_id,
|
| 126 |
+
eos_token_id=eos_token_id,
|
| 127 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 128 |
+
**kwargs,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
def _rope_scaling_validation(self):
|
| 132 |
+
"""
|
| 133 |
+
Validate the `rope_scaling` configuration.
|
| 134 |
+
"""
|
| 135 |
+
if self.rope_scaling is None:
|
| 136 |
+
return
|
| 137 |
+
|
| 138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 139 |
+
raise ValueError(
|
| 140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
| 141 |
+
f'got {self.rope_scaling}'
|
| 142 |
+
)
|
| 143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
| 145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
| 146 |
+
raise ValueError(
|
| 147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 148 |
+
)
|
| 149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
| 150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_phi3.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License atd
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
""" Phi-3 model configuration"""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 24 |
+
'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
|
| 25 |
+
'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Phi3Config(PretrainedConfig):
|
| 30 |
+
r"""
|
| 31 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
| 32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 33 |
+
defaults will yield a similar configuration to that of the
|
| 34 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
| 35 |
+
|
| 36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 37 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
| 41 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
| 42 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
| 43 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 44 |
+
Dimension of the hidden representations.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 46 |
+
Dimension of the MLP representations.
|
| 47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of hidden layers in the Transformer decoder.
|
| 49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 51 |
+
num_key_value_heads (`int`, *optional*):
|
| 52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 58 |
+
`num_attention_heads`.
|
| 59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
Dropout probability for mlp outputs.
|
| 61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 62 |
+
The dropout ratio for the embeddings.
|
| 63 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 64 |
+
The dropout ratio after computing the attention scores.
|
| 65 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 66 |
+
The non-linear activation function (function or string) in the decoder.
|
| 67 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 68 |
+
The maximum sequence length that this model might ever be used with.
|
| 69 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 70 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 71 |
+
original RoPE embeddings when using long scaling.
|
| 72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 74 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 75 |
+
The epsilon value used for the RMSNorm.
|
| 76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 77 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 78 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 80 |
+
Whether to tie weight embeddings
|
| 81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 82 |
+
The base period of the RoPE embeddings.
|
| 83 |
+
rope_scaling (`dict`, *optional*):
|
| 84 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 85 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
| 86 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 87 |
+
divided by the number of attention heads divided by 2.
|
| 88 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 89 |
+
The id of the "beginning-of-sequence" token.
|
| 90 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
| 91 |
+
The id of the "end-of-sequence" token.
|
| 92 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
| 93 |
+
The id of the padding token.
|
| 94 |
+
sliding_window (`int`, *optional*):
|
| 95 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 96 |
+
|
| 97 |
+
Example:
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
>>> from transformers import Phi3Model, Phi3Config
|
| 101 |
+
|
| 102 |
+
>>> # Initializing a Phi-3 style configuration
|
| 103 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
| 104 |
+
|
| 105 |
+
>>> # Initializing a model from the configuration
|
| 106 |
+
>>> model = Phi3Model(configuration)
|
| 107 |
+
|
| 108 |
+
>>> # Accessing the model configuration
|
| 109 |
+
>>> configuration = model.config
|
| 110 |
+
```"""
|
| 111 |
+
|
| 112 |
+
model_type = 'phi3'
|
| 113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
| 114 |
+
|
| 115 |
+
def __init__(
|
| 116 |
+
self,
|
| 117 |
+
vocab_size=32064,
|
| 118 |
+
hidden_size=3072,
|
| 119 |
+
intermediate_size=8192,
|
| 120 |
+
num_hidden_layers=32,
|
| 121 |
+
num_attention_heads=32,
|
| 122 |
+
num_key_value_heads=None,
|
| 123 |
+
resid_pdrop=0.0,
|
| 124 |
+
embd_pdrop=0.0,
|
| 125 |
+
attention_dropout=0.0,
|
| 126 |
+
hidden_act='silu',
|
| 127 |
+
max_position_embeddings=4096,
|
| 128 |
+
original_max_position_embeddings=4096,
|
| 129 |
+
initializer_range=0.02,
|
| 130 |
+
rms_norm_eps=1e-5,
|
| 131 |
+
use_cache=True,
|
| 132 |
+
tie_word_embeddings=False,
|
| 133 |
+
rope_theta=10000.0,
|
| 134 |
+
rope_scaling=None,
|
| 135 |
+
bos_token_id=1,
|
| 136 |
+
eos_token_id=32000,
|
| 137 |
+
pad_token_id=32000,
|
| 138 |
+
sliding_window=None,
|
| 139 |
+
**kwargs,
|
| 140 |
+
):
|
| 141 |
+
self.vocab_size = vocab_size
|
| 142 |
+
self.hidden_size = hidden_size
|
| 143 |
+
self.intermediate_size = intermediate_size
|
| 144 |
+
self.num_hidden_layers = num_hidden_layers
|
| 145 |
+
self.num_attention_heads = num_attention_heads
|
| 146 |
+
|
| 147 |
+
if num_key_value_heads is None:
|
| 148 |
+
num_key_value_heads = num_attention_heads
|
| 149 |
+
|
| 150 |
+
self.num_key_value_heads = num_key_value_heads
|
| 151 |
+
self.resid_pdrop = resid_pdrop
|
| 152 |
+
self.embd_pdrop = embd_pdrop
|
| 153 |
+
self.attention_dropout = attention_dropout
|
| 154 |
+
self.hidden_act = hidden_act
|
| 155 |
+
self.max_position_embeddings = max_position_embeddings
|
| 156 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 157 |
+
self.initializer_range = initializer_range
|
| 158 |
+
self.rms_norm_eps = rms_norm_eps
|
| 159 |
+
self.use_cache = use_cache
|
| 160 |
+
self.rope_theta = rope_theta
|
| 161 |
+
self.rope_scaling = rope_scaling
|
| 162 |
+
self._rope_scaling_validation()
|
| 163 |
+
self.sliding_window = sliding_window
|
| 164 |
+
|
| 165 |
+
super().__init__(
|
| 166 |
+
bos_token_id=bos_token_id,
|
| 167 |
+
eos_token_id=eos_token_id,
|
| 168 |
+
pad_token_id=pad_token_id,
|
| 169 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 170 |
+
**kwargs,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
def _rope_scaling_validation(self):
|
| 174 |
+
"""
|
| 175 |
+
Validate the `rope_scaling` configuration.
|
| 176 |
+
"""
|
| 177 |
+
if self.rope_scaling is None:
|
| 178 |
+
return
|
| 179 |
+
|
| 180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
| 181 |
+
raise ValueError(
|
| 182 |
+
'`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
|
| 183 |
+
f'got {self.rope_scaling}'
|
| 184 |
+
)
|
| 185 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
| 186 |
+
rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
|
| 187 |
+
rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
|
| 188 |
+
if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
|
| 189 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
| 190 |
+
if not (
|
| 191 |
+
isinstance(rope_scaling_short_factor, list)
|
| 192 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
| 193 |
+
):
|
| 194 |
+
raise ValueError(
|
| 195 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
| 196 |
+
)
|
| 197 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 198 |
+
raise ValueError(
|
| 199 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
| 200 |
+
)
|
| 201 |
+
if not (
|
| 202 |
+
isinstance(rope_scaling_long_factor, list)
|
| 203 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
| 204 |
+
):
|
| 205 |
+
raise ValueError(
|
| 206 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
| 207 |
+
)
|
| 208 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
| 209 |
+
raise ValueError(
|
| 210 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
| 211 |
+
)
|
configuration_sa2va_chat.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import copy
|
| 8 |
+
|
| 9 |
+
from .configuration_internlm2 import InternLM2Config
|
| 10 |
+
from .configuration_phi3 import Phi3Config
|
| 11 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config, Mask2FormerConfig
|
| 12 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
|
| 15 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class Sa2VAChatConfig(PretrainedConfig):
|
| 21 |
+
model_type = 'sa2va_chat'
|
| 22 |
+
is_composition = True
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
vision_config=None,
|
| 27 |
+
llm_config=None,
|
| 28 |
+
m2f_config=None,
|
| 29 |
+
use_backbone_lora=0,
|
| 30 |
+
use_llm_lora=0,
|
| 31 |
+
pad2square=False,
|
| 32 |
+
select_layer=-1,
|
| 33 |
+
force_image_size=None,
|
| 34 |
+
downsample_ratio=0.5,
|
| 35 |
+
template=None,
|
| 36 |
+
dynamic_image_size=False,
|
| 37 |
+
use_thumbnail=False,
|
| 38 |
+
ps_version='v1',
|
| 39 |
+
min_dynamic_patch=1,
|
| 40 |
+
max_dynamic_patch=6,
|
| 41 |
+
# mask2former
|
| 42 |
+
num_m2f_queries=300,
|
| 43 |
+
num_m2f_proposals=100,
|
| 44 |
+
**kwargs):
|
| 45 |
+
super().__init__(**kwargs)
|
| 46 |
+
if vision_config is None:
|
| 47 |
+
vision_config = {"architectures": ["InternVisionModel"]}
|
| 48 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
| 49 |
+
|
| 50 |
+
if llm_config is None:
|
| 51 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
| 52 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
| 53 |
+
|
| 54 |
+
if m2f_config is None:
|
| 55 |
+
m2f_config = {"architectures": ["SwinForImageClassification"]}
|
| 56 |
+
logger.info('m2f_config is None. Initializing the Mask2FormerConfig config with default values.')
|
| 57 |
+
|
| 58 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
| 59 |
+
self.m2f_config = Mask2FormerConfig(**m2f_config)
|
| 60 |
+
|
| 61 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
| 62 |
+
self.llm_config = LlamaConfig(**llm_config)
|
| 63 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
| 64 |
+
self.llm_config = InternLM2Config(**llm_config)
|
| 65 |
+
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
| 66 |
+
self.llm_config = Phi3Config(**llm_config)
|
| 67 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
| 68 |
+
self.llm_config = Qwen2Config(**llm_config)
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
| 71 |
+
self.use_backbone_lora = use_backbone_lora
|
| 72 |
+
self.use_llm_lora = use_llm_lora
|
| 73 |
+
self.pad2square = pad2square
|
| 74 |
+
self.select_layer = select_layer
|
| 75 |
+
self.force_image_size = force_image_size
|
| 76 |
+
self.downsample_ratio = downsample_ratio
|
| 77 |
+
self.template = template
|
| 78 |
+
self.dynamic_image_size = dynamic_image_size
|
| 79 |
+
self.use_thumbnail = use_thumbnail
|
| 80 |
+
self.ps_version = ps_version # pixel shuffle version
|
| 81 |
+
self.min_dynamic_patch = min_dynamic_patch
|
| 82 |
+
self.max_dynamic_patch = max_dynamic_patch
|
| 83 |
+
# mask2former
|
| 84 |
+
self.num_m2f_queries=num_m2f_queries
|
| 85 |
+
self.num_m2f_proposals=num_m2f_proposals
|
| 86 |
+
|
| 87 |
+
self.hidden_size = self.llm_config.hidden_size
|
| 88 |
+
self.tie_word_embeddings = False
|
| 89 |
+
|
| 90 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
| 91 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 92 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
| 93 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
| 94 |
+
|
| 95 |
+
def to_dict(self):
|
| 96 |
+
"""
|
| 97 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 101 |
+
"""
|
| 102 |
+
output = copy.deepcopy(self.__dict__)
|
| 103 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 104 |
+
output['llm_config'] = self.llm_config.to_dict()
|
| 105 |
+
output['m2f_config'] = self.m2f_config.to_dict()
|
| 106 |
+
output['model_type'] = self.__class__.model_type
|
| 107 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
| 108 |
+
output['use_llm_lora'] = self.use_llm_lora
|
| 109 |
+
output['pad2square'] = self.pad2square
|
| 110 |
+
output['select_layer'] = self.select_layer
|
| 111 |
+
output['force_image_size'] = self.force_image_size
|
| 112 |
+
output['downsample_ratio'] = self.downsample_ratio
|
| 113 |
+
output['template'] = self.template
|
| 114 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
| 115 |
+
output['use_thumbnail'] = self.use_thumbnail
|
| 116 |
+
output['ps_version'] = self.ps_version
|
| 117 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
| 118 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
| 119 |
+
output['num_m2f_queries'] = self.num_m2f_queries
|
| 120 |
+
output['num_m2f_proposals'] = self.num_m2f_proposals
|
| 121 |
+
|
| 122 |
+
return output
|
constants.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
| 2 |
+
IMG_START_TOKEN = '<img>'
|
| 3 |
+
IMG_END_TOKEN = '</img>'
|
| 4 |
+
PHRASE_START_TOKEN = '<p>'
|
| 5 |
+
PHRASE_END_TOKEN = '</p>'
|
| 6 |
+
SEG_TOKEN = '[SEG{id}]'
|
| 7 |
+
CLS_TOKEN = '[CLS]'
|
| 8 |
+
BG_CLS_TOKEN = '[BG_CLS]'
|
| 9 |
+
# PROPOSAL_TOKENS = [f'[SEG{str(i).zfill(3)}]' for i in range(300)]
|
| 10 |
+
OBJ_START_TOKEN = '<obj>'
|
| 11 |
+
OBJ_END_TOKEN = '</obj>'
|
| 12 |
+
OBJ_CONTEXT_TOKEN = '<OBJ_CONTEXT>'
|
| 13 |
+
DEFAULT_OBJ_TOKEN = '<obj_tokens>'
|
flash_attention.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
|
| 6 |
+
try: # v1
|
| 7 |
+
from flash_attn.flash_attn_interface import \
|
| 8 |
+
flash_attn_unpadded_qkvpacked_func
|
| 9 |
+
except: # v2
|
| 10 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 11 |
+
|
| 12 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class FlashAttention(nn.Module):
|
| 16 |
+
"""Implement the scaled dot product attention with softmax.
|
| 17 |
+
Arguments
|
| 18 |
+
---------
|
| 19 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 20 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 21 |
+
runtime)
|
| 22 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 23 |
+
(default: 0.0)
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.softmax_scale = softmax_scale
|
| 29 |
+
self.dropout_p = attention_dropout
|
| 30 |
+
|
| 31 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
| 32 |
+
max_s=None, need_weights=False):
|
| 33 |
+
"""Implements the multihead softmax attention.
|
| 34 |
+
Arguments
|
| 35 |
+
---------
|
| 36 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
| 37 |
+
if unpadded: (nnz, 3, h, d)
|
| 38 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
| 39 |
+
"""
|
| 40 |
+
assert not need_weights
|
| 41 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
| 42 |
+
assert qkv.is_cuda
|
| 43 |
+
|
| 44 |
+
if cu_seqlens is None:
|
| 45 |
+
batch_size = qkv.shape[0]
|
| 46 |
+
seqlen = qkv.shape[1]
|
| 47 |
+
if key_padding_mask is None:
|
| 48 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
| 49 |
+
max_s = seqlen
|
| 50 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
| 51 |
+
device=qkv.device)
|
| 52 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 53 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 54 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 55 |
+
)
|
| 56 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
| 57 |
+
else:
|
| 58 |
+
nheads = qkv.shape[-2]
|
| 59 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
| 60 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
| 61 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
| 62 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
| 63 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 64 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 65 |
+
)
|
| 66 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
| 67 |
+
indices, batch_size, seqlen),
|
| 68 |
+
'b s (h d) -> b s h d', h=nheads)
|
| 69 |
+
else:
|
| 70 |
+
assert max_s is not None
|
| 71 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 72 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
| 73 |
+
softmax_scale=self.softmax_scale, causal=causal
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
return output, None
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.47.0"
|
| 4 |
+
}
|
mask2former.py
ADDED
|
@@ -0,0 +1,834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 5 |
+
from transformers.models.mask2former.modeling_mask2former import (
|
| 6 |
+
Mask2FormerMaskedAttentionDecoderOutput, Mask2FormerModelOutput,
|
| 7 |
+
Mask2FormerForUniversalSegmentationOutput, Mask2FormerMLPPredictionHead,
|
| 8 |
+
sample_point, pair_wise_sigmoid_cross_entropy_loss, pair_wise_dice_loss,
|
| 9 |
+
sigmoid_cross_entropy_loss, dice_loss)
|
| 10 |
+
from torch import Tensor
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
from transformers.file_utils import is_scipy_available
|
| 14 |
+
|
| 15 |
+
if is_scipy_available():
|
| 16 |
+
from scipy.optimize import linear_sum_assignment
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_classification_logits(x, text_classifier, logit_scale):
|
| 20 |
+
# x in shape of [B, *, C]
|
| 21 |
+
# text_classifier in shape of [num_classes, C]
|
| 22 |
+
# logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
|
| 23 |
+
# return: [B, *, num_classes]
|
| 24 |
+
x = F.normalize(x, dim=-1)
|
| 25 |
+
text_classifier = F.normalize(text_classifier, dim=-1)
|
| 26 |
+
logit_scale = torch.clamp(logit_scale.exp(), max=100)
|
| 27 |
+
pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
|
| 28 |
+
return pred_logits
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _post_init(self):
|
| 32 |
+
self.class_embed = Mask2FormerMLPPredictionHead(self.config.hidden_dim, self.config.hidden_dim, self.config.hidden_dim, 3)
|
| 33 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def ov_class_predictor(self, x, text_classifier):
|
| 37 |
+
x = self.class_embed(x)
|
| 38 |
+
all_pred_logits = []
|
| 39 |
+
for per_x, per_text_classifier in zip(x, text_classifier):
|
| 40 |
+
per_pred_logits = get_classification_logits(per_x.unsqueeze(0), per_text_classifier, self.logit_scale)
|
| 41 |
+
all_pred_logits.append(per_pred_logits.squeeze(0))
|
| 42 |
+
|
| 43 |
+
return all_pred_logits
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def Mask2FormerLoss_loss_labels(
|
| 48 |
+
self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array]
|
| 49 |
+
) -> Dict[str, Tensor]:
|
| 50 |
+
batch_size = len(class_queries_logits)
|
| 51 |
+
num_queries = class_queries_logits[0].shape[0]
|
| 52 |
+
all_ce_loss = []
|
| 53 |
+
for i in range(batch_size):
|
| 54 |
+
num_labels_plus1 = class_queries_logits[i].shape[-1]
|
| 55 |
+
empty_weight = torch.ones(num_labels_plus1)
|
| 56 |
+
empty_weight[-1] = self.eos_coef
|
| 57 |
+
empty_weight = empty_weight.to(class_queries_logits[i].device).to(class_queries_logits[i].dtype)
|
| 58 |
+
criterion = nn.CrossEntropyLoss(weight=empty_weight, reduction='none')
|
| 59 |
+
target_classes_o = class_labels[i][indices[i][1]]
|
| 60 |
+
target_classes = torch.full(
|
| 61 |
+
(num_queries, ), fill_value=num_labels_plus1-1, dtype=torch.int64, device=class_queries_logits[i].device)
|
| 62 |
+
target_classes[indices[i][0]] = target_classes_o.to(class_queries_logits[i].device)
|
| 63 |
+
target_classes = target_classes.unsqueeze(0)
|
| 64 |
+
pred_logits = class_queries_logits[i].unsqueeze(0).transpose(1, 2)
|
| 65 |
+
loss_ce = criterion(pred_logits, target_classes)
|
| 66 |
+
all_ce_loss.append(loss_ce)
|
| 67 |
+
losses = {"loss_cross_entropy": torch.cat(all_ce_loss, dim=-1).mean()}
|
| 68 |
+
return losses
|
| 69 |
+
|
| 70 |
+
def Mask2FormerLoss_loss_masks(
|
| 71 |
+
self,
|
| 72 |
+
masks_queries_logits: torch.Tensor,
|
| 73 |
+
mask_labels: List[torch.Tensor],
|
| 74 |
+
indices: Tuple[np.array],
|
| 75 |
+
num_masks: int
|
| 76 |
+
) -> Dict[str, torch.Tensor]:
|
| 77 |
+
src_idx = self._get_predictions_permutation_indices(indices)
|
| 78 |
+
tgt_idx = self._get_targets_permutation_indices(indices)
|
| 79 |
+
# shape (batch_size * num_queries, height, width)
|
| 80 |
+
pred_masks = masks_queries_logits[src_idx]
|
| 81 |
+
# shape (batch_size, num_queries, height, width)
|
| 82 |
+
# pad all and stack the targets to the num_labels dimension
|
| 83 |
+
target_masks, _ = self._pad_images_to_max_in_batch(mask_labels)
|
| 84 |
+
target_masks = target_masks[tgt_idx]
|
| 85 |
+
|
| 86 |
+
# No need to upsample predictions as we are using normalized coordinates
|
| 87 |
+
pred_masks = pred_masks[:, None]
|
| 88 |
+
target_masks = target_masks[:, None]
|
| 89 |
+
|
| 90 |
+
# Sample point coordinates
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
point_coordinates = self.sample_points_using_uncertainty(
|
| 93 |
+
pred_masks,
|
| 94 |
+
lambda logits: self.calculate_uncertainty(logits),
|
| 95 |
+
self.num_points,
|
| 96 |
+
self.oversample_ratio,
|
| 97 |
+
self.importance_sample_ratio,
|
| 98 |
+
)
|
| 99 |
+
point_labels = sample_point(target_masks.to(torch.bfloat16), point_coordinates.to(torch.bfloat16), align_corners=False).squeeze(1)
|
| 100 |
+
|
| 101 |
+
point_logits = sample_point(pred_masks, point_coordinates.to(pred_masks.dtype), align_corners=False).squeeze(1)
|
| 102 |
+
|
| 103 |
+
losses = {
|
| 104 |
+
"loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks),
|
| 105 |
+
"loss_dice": dice_loss(point_logits, point_labels, num_masks),
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
del pred_masks
|
| 109 |
+
del target_masks
|
| 110 |
+
return losses
|
| 111 |
+
|
| 112 |
+
def Mask2FormerLoss_sample_points_using_uncertainty(
|
| 113 |
+
self,
|
| 114 |
+
logits: torch.Tensor,
|
| 115 |
+
uncertainty_function,
|
| 116 |
+
num_points: int,
|
| 117 |
+
oversample_ratio: int,
|
| 118 |
+
importance_sample_ratio: float,
|
| 119 |
+
) -> torch.Tensor:
|
| 120 |
+
|
| 121 |
+
num_boxes = logits.shape[0]
|
| 122 |
+
num_points_sampled = int(num_points * oversample_ratio)
|
| 123 |
+
|
| 124 |
+
# Get random point coordinates
|
| 125 |
+
point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device)
|
| 126 |
+
# Get sampled prediction value for the point coordinates
|
| 127 |
+
point_logits = sample_point(logits, point_coordinates.to(logits.dtype), align_corners=False)
|
| 128 |
+
# Calculate the uncertainties based on the sampled prediction values of the points
|
| 129 |
+
point_uncertainties = uncertainty_function(point_logits)
|
| 130 |
+
|
| 131 |
+
num_uncertain_points = int(importance_sample_ratio * num_points)
|
| 132 |
+
num_random_points = num_points - num_uncertain_points
|
| 133 |
+
|
| 134 |
+
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
|
| 135 |
+
shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device)
|
| 136 |
+
idx += shift[:, None]
|
| 137 |
+
point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2)
|
| 138 |
+
|
| 139 |
+
if num_random_points > 0:
|
| 140 |
+
point_coordinates = torch.cat(
|
| 141 |
+
[point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)],
|
| 142 |
+
dim=1,
|
| 143 |
+
)
|
| 144 |
+
return point_coordinates
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
@torch.no_grad()
|
| 149 |
+
def Mask2FormerHungarianMatcher_forward(
|
| 150 |
+
self,
|
| 151 |
+
masks_queries_logits: torch.Tensor,
|
| 152 |
+
class_queries_logits: torch.Tensor,
|
| 153 |
+
mask_labels: torch.Tensor,
|
| 154 |
+
class_labels: torch.Tensor,
|
| 155 |
+
) -> List[Tuple[Tensor]]:
|
| 156 |
+
indices: List[Tuple[np.array]] = []
|
| 157 |
+
|
| 158 |
+
# iterate through batch size
|
| 159 |
+
batch_size = masks_queries_logits.shape[0]
|
| 160 |
+
for i in range(batch_size):
|
| 161 |
+
pred_probs = class_queries_logits[i].softmax(-1)
|
| 162 |
+
pred_mask = masks_queries_logits[i]
|
| 163 |
+
|
| 164 |
+
# Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted.
|
| 165 |
+
cost_class = -pred_probs[:, class_labels[i]]
|
| 166 |
+
target_mask = mask_labels[i].to(pred_mask)
|
| 167 |
+
target_mask = target_mask[:, None]
|
| 168 |
+
pred_mask = pred_mask[:, None]
|
| 169 |
+
|
| 170 |
+
# Sample ground truth and predicted masks
|
| 171 |
+
point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device)
|
| 172 |
+
|
| 173 |
+
target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1).to(target_mask.dtype)
|
| 174 |
+
target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1)
|
| 175 |
+
|
| 176 |
+
pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1).to(pred_mask.dtype)
|
| 177 |
+
pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1)
|
| 178 |
+
|
| 179 |
+
# compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels)
|
| 180 |
+
cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask)
|
| 181 |
+
# Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels)
|
| 182 |
+
cost_dice = pair_wise_dice_loss(pred_mask, target_mask)
|
| 183 |
+
# final cost matrix
|
| 184 |
+
cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice
|
| 185 |
+
# eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible``
|
| 186 |
+
cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10))
|
| 187 |
+
cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10))
|
| 188 |
+
cost_matrix = torch.nan_to_num(cost_matrix, 0)
|
| 189 |
+
# do the assigmented using the hungarian algorithm in scipy
|
| 190 |
+
assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.to(torch.float32).cpu())
|
| 191 |
+
indices.append(assigned_indices)
|
| 192 |
+
|
| 193 |
+
# It could be stacked in one tensor
|
| 194 |
+
matched_indices = [
|
| 195 |
+
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices
|
| 196 |
+
]
|
| 197 |
+
return matched_indices
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def Mask2FormerMaskedAttentionDecoder_forward_first3layers(
|
| 203 |
+
self,
|
| 204 |
+
inputs_embeds: torch.Tensor = None,
|
| 205 |
+
multi_stage_positional_embeddings: torch.Tensor = None,
|
| 206 |
+
pixel_embeddings: torch.Tensor = None,
|
| 207 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 208 |
+
query_position_embeddings: torch.Tensor = None,
|
| 209 |
+
feature_size_list: List = None,
|
| 210 |
+
output_attentions: Optional[bool] = None,
|
| 211 |
+
output_hidden_states: Optional[bool] = None,
|
| 212 |
+
return_dict: Optional[bool] = None,
|
| 213 |
+
):
|
| 214 |
+
r"""
|
| 215 |
+
Args:
|
| 216 |
+
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
|
| 217 |
+
The query embeddings that are passed into the decoder.
|
| 218 |
+
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
|
| 219 |
+
Position embeddings that are added to the keys in each cross(masked)-attention layer.
|
| 220 |
+
pixel_embeddings (`torch.FloatTensor`):
|
| 221 |
+
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
|
| 222 |
+
Decoder.
|
| 223 |
+
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
|
| 224 |
+
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
|
| 225 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
|
| 226 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
| 227 |
+
cross(masked)-attention of the decoder.
|
| 228 |
+
feature_size_list (`List[torch.Size]`):
|
| 229 |
+
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
|
| 230 |
+
output_attentions (`bool`, *optional*):
|
| 231 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 232 |
+
returned tensors for more detail.
|
| 233 |
+
output_hidden_states (`bool`, *optional*):
|
| 234 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 235 |
+
for more detail.
|
| 236 |
+
return_dict (`bool`, *optional*):
|
| 237 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 238 |
+
"""
|
| 239 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 240 |
+
output_hidden_states = (
|
| 241 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 242 |
+
)
|
| 243 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 244 |
+
|
| 245 |
+
if inputs_embeds is not None:
|
| 246 |
+
hidden_states = inputs_embeds
|
| 247 |
+
|
| 248 |
+
# intermediate hidden states with layernorm applied - required for predicting class logits
|
| 249 |
+
intermediate = ()
|
| 250 |
+
|
| 251 |
+
# decoder layers
|
| 252 |
+
all_hidden_states = () if output_hidden_states else None
|
| 253 |
+
attentions = () if output_attentions else None
|
| 254 |
+
|
| 255 |
+
# intermediate mask predictions from transformer decoder layers
|
| 256 |
+
intermediate_mask_predictions = ()
|
| 257 |
+
|
| 258 |
+
intermediate_hidden_states = self.layernorm(inputs_embeds)
|
| 259 |
+
intermediate += (intermediate_hidden_states,)
|
| 260 |
+
|
| 261 |
+
predicted_mask, attention_mask = self.mask_predictor(
|
| 262 |
+
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
|
| 263 |
+
)
|
| 264 |
+
intermediate_mask_predictions += (predicted_mask,)
|
| 265 |
+
|
| 266 |
+
for idx, decoder_layer in enumerate(self.layers[:3]):
|
| 267 |
+
if output_hidden_states:
|
| 268 |
+
all_hidden_states += (hidden_states,)
|
| 269 |
+
|
| 270 |
+
dropout_probability = torch.rand([])
|
| 271 |
+
|
| 272 |
+
if self.training and (dropout_probability < self.layerdrop):
|
| 273 |
+
continue
|
| 274 |
+
|
| 275 |
+
if self.gradient_checkpointing and self.training:
|
| 276 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 277 |
+
decoder_layer.__call__,
|
| 278 |
+
hidden_states,
|
| 279 |
+
attention_mask,
|
| 280 |
+
encoder_hidden_states,
|
| 281 |
+
None,
|
| 282 |
+
None,
|
| 283 |
+
output_attentions,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
else:
|
| 287 |
+
level_index = idx % self.num_feature_levels
|
| 288 |
+
|
| 289 |
+
where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
|
| 290 |
+
# Multiply the attention mask instead of indexing to avoid issue in torch.export.
|
| 291 |
+
attention_mask = attention_mask * where.unsqueeze(-1)
|
| 292 |
+
|
| 293 |
+
layer_outputs = decoder_layer(
|
| 294 |
+
hidden_states,
|
| 295 |
+
level_index=level_index,
|
| 296 |
+
position_embeddings=multi_stage_positional_embeddings,
|
| 297 |
+
query_position_embeddings=query_position_embeddings,
|
| 298 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 299 |
+
encoder_attention_mask=attention_mask,
|
| 300 |
+
output_attentions=output_attentions,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
intermediate_hidden_states = self.layernorm(layer_outputs[0])
|
| 304 |
+
|
| 305 |
+
predicted_mask, attention_mask = self.mask_predictor(
|
| 306 |
+
intermediate_hidden_states,
|
| 307 |
+
pixel_embeddings,
|
| 308 |
+
feature_size_list[(idx + 1) % self.num_feature_levels],
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
intermediate_mask_predictions += (predicted_mask,)
|
| 312 |
+
|
| 313 |
+
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
|
| 314 |
+
intermediate += (intermediate_hidden_states,)
|
| 315 |
+
|
| 316 |
+
hidden_states = layer_outputs[0]
|
| 317 |
+
|
| 318 |
+
if output_attentions:
|
| 319 |
+
attentions += (layer_outputs[1],)
|
| 320 |
+
|
| 321 |
+
# add hidden states from the last decoder layer
|
| 322 |
+
if output_hidden_states:
|
| 323 |
+
all_hidden_states += (hidden_states,)
|
| 324 |
+
|
| 325 |
+
hidden_states = hidden_states.transpose(1, 0)
|
| 326 |
+
if not return_dict:
|
| 327 |
+
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
|
| 328 |
+
return tuple(v for v in outputs if v is not None)
|
| 329 |
+
|
| 330 |
+
return Mask2FormerMaskedAttentionDecoderOutput(
|
| 331 |
+
last_hidden_state=hidden_states,
|
| 332 |
+
hidden_states=all_hidden_states,
|
| 333 |
+
attentions=attentions,
|
| 334 |
+
intermediate_hidden_states=intermediate,
|
| 335 |
+
masks_queries_logits=intermediate_mask_predictions,
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def Mask2FormerMaskedAttentionDecoder_forward_last3layers(
|
| 340 |
+
self,
|
| 341 |
+
inputs_embeds: torch.Tensor = None,
|
| 342 |
+
multi_stage_positional_embeddings: torch.Tensor = None,
|
| 343 |
+
pixel_embeddings: torch.Tensor = None,
|
| 344 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 345 |
+
query_position_embeddings: torch.Tensor = None,
|
| 346 |
+
feature_size_list: List = None,
|
| 347 |
+
output_attentions: Optional[bool] = None,
|
| 348 |
+
output_hidden_states: Optional[bool] = None,
|
| 349 |
+
return_dict: Optional[bool] = None,
|
| 350 |
+
):
|
| 351 |
+
r"""
|
| 352 |
+
Args:
|
| 353 |
+
inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
|
| 354 |
+
The query embeddings that are passed into the decoder.
|
| 355 |
+
multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`):
|
| 356 |
+
Position embeddings that are added to the keys in each cross(masked)-attention layer.
|
| 357 |
+
pixel_embeddings (`torch.FloatTensor`):
|
| 358 |
+
Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel
|
| 359 |
+
Decoder.
|
| 360 |
+
query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`):
|
| 361 |
+
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
|
| 362 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`):
|
| 363 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
| 364 |
+
cross(masked)-attention of the decoder.
|
| 365 |
+
feature_size_list (`List[torch.Size]`):
|
| 366 |
+
This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder.
|
| 367 |
+
output_attentions (`bool`, *optional*):
|
| 368 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 369 |
+
returned tensors for more detail.
|
| 370 |
+
output_hidden_states (`bool`, *optional*):
|
| 371 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 372 |
+
for more detail.
|
| 373 |
+
return_dict (`bool`, *optional*):
|
| 374 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 375 |
+
"""
|
| 376 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 377 |
+
output_hidden_states = (
|
| 378 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 379 |
+
)
|
| 380 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 381 |
+
|
| 382 |
+
if inputs_embeds is not None:
|
| 383 |
+
hidden_states = inputs_embeds
|
| 384 |
+
|
| 385 |
+
# intermediate hidden states with layernorm applied - required for predicting class logits
|
| 386 |
+
intermediate = ()
|
| 387 |
+
|
| 388 |
+
# decoder layers
|
| 389 |
+
all_hidden_states = () if output_hidden_states else None
|
| 390 |
+
attentions = () if output_attentions else None
|
| 391 |
+
|
| 392 |
+
# intermediate mask predictions from transformer decoder layers
|
| 393 |
+
intermediate_mask_predictions = ()
|
| 394 |
+
|
| 395 |
+
intermediate_hidden_states = self.layernorm(inputs_embeds)
|
| 396 |
+
intermediate += (intermediate_hidden_states,)
|
| 397 |
+
|
| 398 |
+
predicted_mask, attention_mask = self.mask_predictor(
|
| 399 |
+
intermediate_hidden_states, pixel_embeddings, feature_size_list[0]
|
| 400 |
+
)
|
| 401 |
+
intermediate_mask_predictions += (predicted_mask,)
|
| 402 |
+
|
| 403 |
+
for _idx, decoder_layer in enumerate(self.layers[3:]):
|
| 404 |
+
idx = _idx + 3
|
| 405 |
+
if output_hidden_states:
|
| 406 |
+
all_hidden_states += (hidden_states,)
|
| 407 |
+
|
| 408 |
+
dropout_probability = torch.rand([])
|
| 409 |
+
|
| 410 |
+
if self.training and (dropout_probability < self.layerdrop):
|
| 411 |
+
continue
|
| 412 |
+
|
| 413 |
+
if self.gradient_checkpointing and self.training:
|
| 414 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 415 |
+
decoder_layer.__call__,
|
| 416 |
+
hidden_states,
|
| 417 |
+
attention_mask,
|
| 418 |
+
encoder_hidden_states,
|
| 419 |
+
None,
|
| 420 |
+
None,
|
| 421 |
+
output_attentions,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
else:
|
| 425 |
+
level_index = idx % self.num_feature_levels
|
| 426 |
+
|
| 427 |
+
where = (attention_mask.sum(-1) != attention_mask.shape[-1]).to(attention_mask.dtype)
|
| 428 |
+
# Multiply the attention mask instead of indexing to avoid issue in torch.export.
|
| 429 |
+
attention_mask = attention_mask * where.unsqueeze(-1)
|
| 430 |
+
|
| 431 |
+
layer_outputs = decoder_layer(
|
| 432 |
+
hidden_states,
|
| 433 |
+
level_index=level_index,
|
| 434 |
+
position_embeddings=multi_stage_positional_embeddings,
|
| 435 |
+
query_position_embeddings=query_position_embeddings,
|
| 436 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 437 |
+
encoder_attention_mask=attention_mask,
|
| 438 |
+
output_attentions=output_attentions,
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
intermediate_hidden_states = self.layernorm(layer_outputs[0])
|
| 442 |
+
|
| 443 |
+
predicted_mask, attention_mask = self.mask_predictor(
|
| 444 |
+
intermediate_hidden_states,
|
| 445 |
+
pixel_embeddings,
|
| 446 |
+
feature_size_list[(idx + 1) % self.num_feature_levels],
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
intermediate_mask_predictions += (predicted_mask,)
|
| 450 |
+
|
| 451 |
+
# add intermediate hidden states with layer norm applied which will be used for predicting class logits
|
| 452 |
+
intermediate += (intermediate_hidden_states,)
|
| 453 |
+
|
| 454 |
+
hidden_states = layer_outputs[0]
|
| 455 |
+
|
| 456 |
+
if output_attentions:
|
| 457 |
+
attentions += (layer_outputs[1],)
|
| 458 |
+
|
| 459 |
+
# add hidden states from the last decoder layer
|
| 460 |
+
if output_hidden_states:
|
| 461 |
+
all_hidden_states += (hidden_states,)
|
| 462 |
+
|
| 463 |
+
hidden_states = hidden_states.transpose(1, 0)
|
| 464 |
+
if not return_dict:
|
| 465 |
+
outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions]
|
| 466 |
+
return tuple(v for v in outputs if v is not None)
|
| 467 |
+
|
| 468 |
+
return Mask2FormerMaskedAttentionDecoderOutput(
|
| 469 |
+
last_hidden_state=hidden_states,
|
| 470 |
+
hidden_states=all_hidden_states,
|
| 471 |
+
attentions=attentions,
|
| 472 |
+
intermediate_hidden_states=intermediate,
|
| 473 |
+
masks_queries_logits=intermediate_mask_predictions,
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def Mask2FormerTransformerModule_forward_first_part(
|
| 478 |
+
self,
|
| 479 |
+
multi_scale_features: List[Tensor],
|
| 480 |
+
mask_features: Tensor,
|
| 481 |
+
output_hidden_states: bool = False,
|
| 482 |
+
output_attentions: bool = False,
|
| 483 |
+
) -> Mask2FormerMaskedAttentionDecoderOutput:
|
| 484 |
+
multi_stage_features = []
|
| 485 |
+
multi_stage_positional_embeddings = []
|
| 486 |
+
size_list = []
|
| 487 |
+
|
| 488 |
+
for i in range(self.num_feature_levels):
|
| 489 |
+
size_list.append(multi_scale_features[i].shape[-2:])
|
| 490 |
+
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
|
| 491 |
+
multi_stage_features.append(
|
| 492 |
+
self.input_projections[i](multi_scale_features[i]).flatten(2)
|
| 493 |
+
+ self.level_embed.weight[i][None, :, None]
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
|
| 497 |
+
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
|
| 498 |
+
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
|
| 499 |
+
|
| 500 |
+
_, batch_size, _ = multi_stage_features[0].shape
|
| 501 |
+
|
| 502 |
+
# [num_queries, batch_size, num_channels]
|
| 503 |
+
query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
|
| 504 |
+
query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
|
| 505 |
+
|
| 506 |
+
decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_first3layers(
|
| 507 |
+
inputs_embeds=query_features,
|
| 508 |
+
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
|
| 509 |
+
pixel_embeddings=mask_features,
|
| 510 |
+
encoder_hidden_states=multi_stage_features,
|
| 511 |
+
query_position_embeddings=query_embeddings,
|
| 512 |
+
feature_size_list=size_list,
|
| 513 |
+
output_hidden_states=output_hidden_states,
|
| 514 |
+
output_attentions=output_attentions,
|
| 515 |
+
return_dict=True,
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
return decoder_output
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
def Mask2FormerTransformerModule_forward_second_part(
|
| 522 |
+
self,
|
| 523 |
+
query_features: Tensor,
|
| 524 |
+
query_embeddings: Tensor,
|
| 525 |
+
multi_scale_features: List[Tensor],
|
| 526 |
+
mask_features: Tensor,
|
| 527 |
+
output_hidden_states: bool = False,
|
| 528 |
+
output_attentions: bool = False,
|
| 529 |
+
) -> Mask2FormerMaskedAttentionDecoderOutput:
|
| 530 |
+
multi_stage_features = []
|
| 531 |
+
multi_stage_positional_embeddings = []
|
| 532 |
+
size_list = []
|
| 533 |
+
|
| 534 |
+
for i in range(self.num_feature_levels):
|
| 535 |
+
size_list.append(multi_scale_features[i].shape[-2:])
|
| 536 |
+
multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2))
|
| 537 |
+
multi_stage_features.append(
|
| 538 |
+
self.input_projections[i](multi_scale_features[i]).flatten(2)
|
| 539 |
+
+ self.level_embed.weight[i][None, :, None]
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
# Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels)
|
| 543 |
+
multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1)
|
| 544 |
+
multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1)
|
| 545 |
+
|
| 546 |
+
_, batch_size, _ = multi_stage_features[0].shape
|
| 547 |
+
|
| 548 |
+
# [num_queries, batch_size, num_channels]
|
| 549 |
+
# query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1)
|
| 550 |
+
# query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1)
|
| 551 |
+
|
| 552 |
+
decoder_output = self.decoder.Mask2FormerMaskedAttentionDecoder_forward_last3layers(
|
| 553 |
+
inputs_embeds=query_features,
|
| 554 |
+
multi_stage_positional_embeddings=multi_stage_positional_embeddings,
|
| 555 |
+
pixel_embeddings=mask_features,
|
| 556 |
+
encoder_hidden_states=multi_stage_features,
|
| 557 |
+
query_position_embeddings=query_embeddings,
|
| 558 |
+
feature_size_list=size_list,
|
| 559 |
+
output_hidden_states=output_hidden_states,
|
| 560 |
+
output_attentions=output_attentions,
|
| 561 |
+
return_dict=True,
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
return decoder_output
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
def Mask2FormerModel_forward_first_part(
|
| 568 |
+
self,
|
| 569 |
+
pixel_values: Tensor,
|
| 570 |
+
pixel_mask: Optional[Tensor] = None,
|
| 571 |
+
output_hidden_states: Optional[bool] = None,
|
| 572 |
+
output_attentions: Optional[bool] = None,
|
| 573 |
+
return_dict: Optional[bool] = None,
|
| 574 |
+
) -> Mask2FormerModelOutput:
|
| 575 |
+
r"""
|
| 576 |
+
Returns:
|
| 577 |
+
`Mask2FormerModelOutput`
|
| 578 |
+
|
| 579 |
+
Examples:
|
| 580 |
+
```python
|
| 581 |
+
>>> import torch
|
| 582 |
+
>>> from PIL import Image
|
| 583 |
+
>>> import requests
|
| 584 |
+
>>> from transformers import AutoImageProcessor, Mask2FormerModel
|
| 585 |
+
|
| 586 |
+
>>> # load image
|
| 587 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 588 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 589 |
+
|
| 590 |
+
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
|
| 591 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
|
| 592 |
+
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
|
| 593 |
+
>>> inputs = image_processor(image, return_tensors="pt")
|
| 594 |
+
|
| 595 |
+
>>> # forward pass
|
| 596 |
+
>>> with torch.no_grad():
|
| 597 |
+
... outputs = model(**inputs)
|
| 598 |
+
|
| 599 |
+
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
|
| 600 |
+
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
|
| 601 |
+
torch.Size([1, 100, 256])
|
| 602 |
+
```
|
| 603 |
+
"""
|
| 604 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 605 |
+
output_hidden_states = (
|
| 606 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 607 |
+
)
|
| 608 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 609 |
+
|
| 610 |
+
batch_size, _, height, width = pixel_values.shape
|
| 611 |
+
|
| 612 |
+
if pixel_mask is None:
|
| 613 |
+
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
|
| 614 |
+
|
| 615 |
+
pixel_level_module_output = self.pixel_level_module(
|
| 616 |
+
pixel_values=pixel_values, output_hidden_states=output_hidden_states
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_first_part(
|
| 620 |
+
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
|
| 621 |
+
mask_features=pixel_level_module_output.decoder_last_hidden_state,
|
| 622 |
+
output_hidden_states=True,
|
| 623 |
+
output_attentions=output_attentions,
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
query_features = transformer_module_output.last_hidden_state
|
| 627 |
+
return query_features, pixel_level_module_output
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
def Mask2FormerModel_forward_second_part(
|
| 631 |
+
self,
|
| 632 |
+
query_features: Tensor,
|
| 633 |
+
query_embeddings: Tensor,
|
| 634 |
+
pixel_level_module_output,
|
| 635 |
+
pixel_values: Tensor,
|
| 636 |
+
pixel_mask: Optional[Tensor] = None,
|
| 637 |
+
output_hidden_states: Optional[bool] = None,
|
| 638 |
+
output_attentions: Optional[bool] = None,
|
| 639 |
+
return_dict: Optional[bool] = None,
|
| 640 |
+
) -> Mask2FormerModelOutput:
|
| 641 |
+
r"""
|
| 642 |
+
Returns:
|
| 643 |
+
`Mask2FormerModelOutput`
|
| 644 |
+
|
| 645 |
+
Examples:
|
| 646 |
+
```python
|
| 647 |
+
>>> import torch
|
| 648 |
+
>>> from PIL import Image
|
| 649 |
+
>>> import requests
|
| 650 |
+
>>> from transformers import AutoImageProcessor, Mask2FormerModel
|
| 651 |
+
|
| 652 |
+
>>> # load image
|
| 653 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 654 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 655 |
+
|
| 656 |
+
>>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset
|
| 657 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
|
| 658 |
+
>>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance")
|
| 659 |
+
>>> inputs = image_processor(image, return_tensors="pt")
|
| 660 |
+
|
| 661 |
+
>>> # forward pass
|
| 662 |
+
>>> with torch.no_grad():
|
| 663 |
+
... outputs = model(**inputs)
|
| 664 |
+
|
| 665 |
+
>>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size)
|
| 666 |
+
>>> print(outputs.transformer_decoder_last_hidden_state.shape)
|
| 667 |
+
torch.Size([1, 100, 256])
|
| 668 |
+
```
|
| 669 |
+
"""
|
| 670 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 671 |
+
output_hidden_states = (
|
| 672 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 673 |
+
)
|
| 674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 675 |
+
|
| 676 |
+
batch_size, _, height, width = pixel_values.shape
|
| 677 |
+
|
| 678 |
+
if pixel_mask is None:
|
| 679 |
+
pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device)
|
| 680 |
+
|
| 681 |
+
transformer_module_output = self.transformer_module.Mask2FormerTransformerModule_forward_second_part(
|
| 682 |
+
query_features=query_features,
|
| 683 |
+
query_embeddings=query_embeddings,
|
| 684 |
+
multi_scale_features=pixel_level_module_output.decoder_hidden_states,
|
| 685 |
+
mask_features=pixel_level_module_output.decoder_last_hidden_state,
|
| 686 |
+
output_hidden_states=True,
|
| 687 |
+
output_attentions=output_attentions,
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
encoder_hidden_states = None
|
| 691 |
+
pixel_decoder_hidden_states = None
|
| 692 |
+
transformer_decoder_hidden_states = None
|
| 693 |
+
transformer_decoder_intermediate_states = None
|
| 694 |
+
|
| 695 |
+
if output_hidden_states:
|
| 696 |
+
encoder_hidden_states = pixel_level_module_output.encoder_hidden_states
|
| 697 |
+
pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states
|
| 698 |
+
transformer_decoder_hidden_states = transformer_module_output.hidden_states
|
| 699 |
+
transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states
|
| 700 |
+
|
| 701 |
+
output = Mask2FormerModelOutput(
|
| 702 |
+
encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state,
|
| 703 |
+
pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state,
|
| 704 |
+
transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state,
|
| 705 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 706 |
+
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
|
| 707 |
+
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
|
| 708 |
+
transformer_decoder_intermediate_states=transformer_decoder_intermediate_states,
|
| 709 |
+
attentions=transformer_module_output.attentions,
|
| 710 |
+
masks_queries_logits=transformer_module_output.masks_queries_logits,
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
if not return_dict:
|
| 714 |
+
output = tuple(v for v in output.values() if v is not None)
|
| 715 |
+
|
| 716 |
+
return output
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
def Mask2FormerForUniversalSegmentation_forward_first_part(
|
| 720 |
+
self,
|
| 721 |
+
pixel_values: Tensor,
|
| 722 |
+
mask_labels: Optional[List[Tensor]] = None,
|
| 723 |
+
class_labels: Optional[List[Tensor]] = None,
|
| 724 |
+
pixel_mask: Optional[Tensor] = None,
|
| 725 |
+
output_hidden_states: Optional[bool] = None,
|
| 726 |
+
output_auxiliary_logits: Optional[bool] = None,
|
| 727 |
+
output_attentions: Optional[bool] = None,
|
| 728 |
+
return_dict: Optional[bool] = None,
|
| 729 |
+
) -> Mask2FormerForUniversalSegmentationOutput:
|
| 730 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 731 |
+
output_hidden_states = (
|
| 732 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 733 |
+
)
|
| 734 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 735 |
+
|
| 736 |
+
query_features, pixel_level_module_output = self.model.Mask2FormerModel_forward_first_part(
|
| 737 |
+
pixel_values=pixel_values,
|
| 738 |
+
pixel_mask=pixel_mask,
|
| 739 |
+
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
|
| 740 |
+
output_attentions=output_attentions,
|
| 741 |
+
return_dict=True,
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
return query_features, pixel_level_module_output
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
def Mask2FormerForUniversalSegmentation_forward_second_part(
|
| 748 |
+
self,
|
| 749 |
+
query_features,
|
| 750 |
+
query_embeddings,
|
| 751 |
+
pixel_level_module_output,
|
| 752 |
+
text_classifier,
|
| 753 |
+
pixel_values: Tensor,
|
| 754 |
+
mask_labels: Optional[List[Tensor]] = None,
|
| 755 |
+
class_labels: Optional[List[Tensor]] = None,
|
| 756 |
+
pixel_mask: Optional[Tensor] = None,
|
| 757 |
+
output_hidden_states: Optional[bool] = None,
|
| 758 |
+
output_auxiliary_logits: Optional[bool] = None,
|
| 759 |
+
output_attentions: Optional[bool] = None,
|
| 760 |
+
return_dict: Optional[bool] = None,
|
| 761 |
+
) -> Mask2FormerForUniversalSegmentationOutput:
|
| 762 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 763 |
+
output_hidden_states = (
|
| 764 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 765 |
+
)
|
| 766 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 767 |
+
|
| 768 |
+
outputs = self.model.Mask2FormerModel_forward_second_part(
|
| 769 |
+
query_features=query_features,
|
| 770 |
+
query_embeddings=query_embeddings,
|
| 771 |
+
pixel_level_module_output=pixel_level_module_output,
|
| 772 |
+
pixel_values=pixel_values,
|
| 773 |
+
pixel_mask=pixel_mask,
|
| 774 |
+
output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss,
|
| 775 |
+
output_attentions=output_attentions,
|
| 776 |
+
return_dict=True,
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
loss, loss_dict, auxiliary_logits = None, None, None
|
| 780 |
+
class_queries_logits = ()
|
| 781 |
+
|
| 782 |
+
for decoder_output in outputs.transformer_decoder_intermediate_states:
|
| 783 |
+
class_prediction = self.ov_class_predictor(decoder_output.transpose(0, 1), text_classifier)
|
| 784 |
+
# class_prediction = self.class_predictor(decoder_output.transpose(0, 1))
|
| 785 |
+
class_queries_logits += (class_prediction,)
|
| 786 |
+
|
| 787 |
+
masks_queries_logits = outputs.masks_queries_logits
|
| 788 |
+
|
| 789 |
+
auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits)
|
| 790 |
+
|
| 791 |
+
if mask_labels is not None and class_labels is not None:
|
| 792 |
+
loss_dict = self.get_loss_dict(
|
| 793 |
+
masks_queries_logits=masks_queries_logits[-1],
|
| 794 |
+
class_queries_logits=class_queries_logits[-1],
|
| 795 |
+
mask_labels=mask_labels,
|
| 796 |
+
class_labels=class_labels,
|
| 797 |
+
auxiliary_predictions=auxiliary_logits,
|
| 798 |
+
)
|
| 799 |
+
loss = self.get_loss(loss_dict)
|
| 800 |
+
|
| 801 |
+
encoder_hidden_states = None
|
| 802 |
+
pixel_decoder_hidden_states = None
|
| 803 |
+
transformer_decoder_hidden_states = None
|
| 804 |
+
|
| 805 |
+
if output_hidden_states:
|
| 806 |
+
encoder_hidden_states = outputs.encoder_hidden_states
|
| 807 |
+
pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states
|
| 808 |
+
transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states
|
| 809 |
+
|
| 810 |
+
output_auxiliary_logits = (
|
| 811 |
+
self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits
|
| 812 |
+
)
|
| 813 |
+
if not output_auxiliary_logits:
|
| 814 |
+
auxiliary_logits = None
|
| 815 |
+
|
| 816 |
+
output = Mask2FormerForUniversalSegmentationOutput(
|
| 817 |
+
loss=loss,
|
| 818 |
+
class_queries_logits=class_queries_logits[-1],
|
| 819 |
+
masks_queries_logits=masks_queries_logits[-1],
|
| 820 |
+
auxiliary_logits=auxiliary_logits,
|
| 821 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
| 822 |
+
pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state,
|
| 823 |
+
transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state,
|
| 824 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 825 |
+
pixel_decoder_hidden_states=pixel_decoder_hidden_states,
|
| 826 |
+
transformer_decoder_hidden_states=transformer_decoder_hidden_states,
|
| 827 |
+
attentions=outputs.attentions,
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
if not return_dict:
|
| 831 |
+
output = tuple(v for v in output.values() if v is not None)
|
| 832 |
+
if loss is not None:
|
| 833 |
+
output = (loss) + output
|
| 834 |
+
return output
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_intern_vit.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from timm.models.layers import DropPath
|
| 14 |
+
from torch import nn
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
| 17 |
+
BaseModelOutputWithPooling)
|
| 18 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
from .configuration_intern_vit import InternVisionConfig
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
from .flash_attention import FlashAttention
|
| 25 |
+
has_flash_attn = True
|
| 26 |
+
except:
|
| 27 |
+
print('FlashAttention is not installed.')
|
| 28 |
+
has_flash_attn = False
|
| 29 |
+
|
| 30 |
+
logger = logging.get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class InternRMSNorm(nn.Module):
|
| 34 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 37 |
+
self.variance_epsilon = eps
|
| 38 |
+
|
| 39 |
+
def forward(self, hidden_states):
|
| 40 |
+
input_dtype = hidden_states.dtype
|
| 41 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 42 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 43 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 44 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
from apex.normalization import FusedRMSNorm
|
| 49 |
+
|
| 50 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
| 51 |
+
|
| 52 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
| 53 |
+
except ImportError:
|
| 54 |
+
# using the normal InternRMSNorm
|
| 55 |
+
pass
|
| 56 |
+
except Exception:
|
| 57 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
NORM2FN = {
|
| 62 |
+
'rms_norm': InternRMSNorm,
|
| 63 |
+
'layer_norm': nn.LayerNorm,
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class InternVisionEmbeddings(nn.Module):
|
| 68 |
+
def __init__(self, config: InternVisionConfig):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.config = config
|
| 71 |
+
self.embed_dim = config.hidden_size
|
| 72 |
+
self.image_size = config.image_size
|
| 73 |
+
self.patch_size = config.patch_size
|
| 74 |
+
|
| 75 |
+
self.class_embedding = nn.Parameter(
|
| 76 |
+
torch.randn(1, 1, self.embed_dim),
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
self.patch_embedding = nn.Conv2d(
|
| 80 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 84 |
+
self.num_positions = self.num_patches + 1
|
| 85 |
+
|
| 86 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
| 87 |
+
|
| 88 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
| 89 |
+
target_dtype = pos_embed.dtype
|
| 90 |
+
pos_embed = pos_embed.float().reshape(
|
| 91 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
| 92 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
| 93 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
| 94 |
+
return pos_embed
|
| 95 |
+
|
| 96 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 97 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 98 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
| 99 |
+
batch_size, _, height, width = patch_embeds.shape
|
| 100 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 101 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
| 102 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 103 |
+
position_embedding = torch.cat([
|
| 104 |
+
self.position_embedding[:, :1, :],
|
| 105 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
| 106 |
+
], dim=1)
|
| 107 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
| 108 |
+
return embeddings
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class InternAttention(nn.Module):
|
| 112 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 113 |
+
|
| 114 |
+
def __init__(self, config: InternVisionConfig):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.config = config
|
| 117 |
+
self.embed_dim = config.hidden_size
|
| 118 |
+
self.num_heads = config.num_attention_heads
|
| 119 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
| 120 |
+
if config.use_flash_attn and not has_flash_attn:
|
| 121 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
| 122 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 123 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
| 126 |
+
f' {self.num_heads}).'
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
self.scale = self.head_dim ** -0.5
|
| 130 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
| 131 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
| 132 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
| 133 |
+
|
| 134 |
+
self.qk_normalization = config.qk_normalization
|
| 135 |
+
|
| 136 |
+
if self.qk_normalization:
|
| 137 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 138 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 139 |
+
|
| 140 |
+
if self.use_flash_attn:
|
| 141 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
| 142 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 143 |
+
|
| 144 |
+
def _naive_attn(self, x):
|
| 145 |
+
B, N, C = x.shape
|
| 146 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 147 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 148 |
+
|
| 149 |
+
if self.qk_normalization:
|
| 150 |
+
B_, H_, N_, D_ = q.shape
|
| 151 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 152 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
| 153 |
+
|
| 154 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
| 155 |
+
attn = attn.softmax(dim=-1)
|
| 156 |
+
attn = self.attn_drop(attn)
|
| 157 |
+
|
| 158 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 159 |
+
x = self.proj(x)
|
| 160 |
+
x = self.proj_drop(x)
|
| 161 |
+
return x
|
| 162 |
+
|
| 163 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
| 164 |
+
qkv = self.qkv(x)
|
| 165 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
| 166 |
+
|
| 167 |
+
if self.qk_normalization:
|
| 168 |
+
q, k, v = qkv.unbind(2)
|
| 169 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
| 170 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
| 171 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 172 |
+
|
| 173 |
+
context, _ = self.inner_attn(
|
| 174 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
| 175 |
+
)
|
| 176 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
| 177 |
+
outs = self.proj_drop(outs)
|
| 178 |
+
return outs
|
| 179 |
+
|
| 180 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 181 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
| 182 |
+
return x
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class InternMLP(nn.Module):
|
| 186 |
+
def __init__(self, config: InternVisionConfig):
|
| 187 |
+
super().__init__()
|
| 188 |
+
self.config = config
|
| 189 |
+
self.act = ACT2FN[config.hidden_act]
|
| 190 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 191 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 192 |
+
|
| 193 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 194 |
+
hidden_states = self.fc1(hidden_states)
|
| 195 |
+
hidden_states = self.act(hidden_states)
|
| 196 |
+
hidden_states = self.fc2(hidden_states)
|
| 197 |
+
return hidden_states
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class InternVisionEncoderLayer(nn.Module):
|
| 201 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.embed_dim = config.hidden_size
|
| 204 |
+
self.intermediate_size = config.intermediate_size
|
| 205 |
+
self.norm_type = config.norm_type
|
| 206 |
+
|
| 207 |
+
self.attn = InternAttention(config)
|
| 208 |
+
self.mlp = InternMLP(config)
|
| 209 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 210 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
| 211 |
+
|
| 212 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 213 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
| 214 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 215 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
| 216 |
+
|
| 217 |
+
def forward(
|
| 218 |
+
self,
|
| 219 |
+
hidden_states: torch.Tensor,
|
| 220 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
| 221 |
+
"""
|
| 222 |
+
Args:
|
| 223 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 224 |
+
"""
|
| 225 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
| 226 |
+
|
| 227 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
| 228 |
+
|
| 229 |
+
return hidden_states
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class InternVisionEncoder(nn.Module):
|
| 233 |
+
"""
|
| 234 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 235 |
+
[`InternEncoderLayer`].
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
config (`InternConfig`):
|
| 239 |
+
The corresponding vision configuration for the `InternEncoder`.
|
| 240 |
+
"""
|
| 241 |
+
|
| 242 |
+
def __init__(self, config: InternVisionConfig):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.config = config
|
| 245 |
+
# stochastic depth decay rule
|
| 246 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
| 247 |
+
self.layers = nn.ModuleList([
|
| 248 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
| 249 |
+
self.gradient_checkpointing = True
|
| 250 |
+
|
| 251 |
+
def forward(
|
| 252 |
+
self,
|
| 253 |
+
inputs_embeds,
|
| 254 |
+
output_hidden_states: Optional[bool] = None,
|
| 255 |
+
return_dict: Optional[bool] = None,
|
| 256 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 257 |
+
r"""
|
| 258 |
+
Args:
|
| 259 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 260 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
| 261 |
+
output_hidden_states (`bool`, *optional*):
|
| 262 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 263 |
+
for more detail.
|
| 264 |
+
return_dict (`bool`, *optional*):
|
| 265 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 266 |
+
"""
|
| 267 |
+
output_hidden_states = (
|
| 268 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 269 |
+
)
|
| 270 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 271 |
+
|
| 272 |
+
encoder_states = () if output_hidden_states else None
|
| 273 |
+
hidden_states = inputs_embeds
|
| 274 |
+
|
| 275 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 276 |
+
if output_hidden_states:
|
| 277 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 278 |
+
if self.gradient_checkpointing and self.training:
|
| 279 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 280 |
+
encoder_layer,
|
| 281 |
+
hidden_states)
|
| 282 |
+
else:
|
| 283 |
+
layer_outputs = encoder_layer(
|
| 284 |
+
hidden_states,
|
| 285 |
+
)
|
| 286 |
+
hidden_states = layer_outputs
|
| 287 |
+
|
| 288 |
+
if output_hidden_states:
|
| 289 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 290 |
+
|
| 291 |
+
if not return_dict:
|
| 292 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 293 |
+
return BaseModelOutput(
|
| 294 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class InternVisionModel(PreTrainedModel):
|
| 299 |
+
main_input_name = 'pixel_values'
|
| 300 |
+
_supports_flash_attn_2 = True
|
| 301 |
+
config_class = InternVisionConfig
|
| 302 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
| 303 |
+
|
| 304 |
+
def __init__(self, config: InternVisionConfig):
|
| 305 |
+
super().__init__(config)
|
| 306 |
+
self.config = config
|
| 307 |
+
|
| 308 |
+
self.embeddings = InternVisionEmbeddings(config)
|
| 309 |
+
self.encoder = InternVisionEncoder(config)
|
| 310 |
+
|
| 311 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
| 312 |
+
pos_emb = self.embeddings.position_embedding
|
| 313 |
+
_, num_positions, embed_dim = pos_emb.shape
|
| 314 |
+
cls_emb = pos_emb[:, :1, :]
|
| 315 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
| 316 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
| 317 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
| 318 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
| 319 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
| 320 |
+
self.embeddings.image_size = new_size
|
| 321 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
| 322 |
+
|
| 323 |
+
def get_input_embeddings(self):
|
| 324 |
+
return self.embeddings
|
| 325 |
+
|
| 326 |
+
def forward(
|
| 327 |
+
self,
|
| 328 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 329 |
+
output_hidden_states: Optional[bool] = None,
|
| 330 |
+
return_dict: Optional[bool] = None,
|
| 331 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
| 332 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 333 |
+
output_hidden_states = (
|
| 334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 335 |
+
)
|
| 336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 337 |
+
|
| 338 |
+
if pixel_values is None and pixel_embeds is None:
|
| 339 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
| 340 |
+
|
| 341 |
+
if pixel_embeds is not None:
|
| 342 |
+
hidden_states = pixel_embeds
|
| 343 |
+
else:
|
| 344 |
+
if len(pixel_values.shape) == 4:
|
| 345 |
+
hidden_states = self.embeddings(pixel_values)
|
| 346 |
+
else:
|
| 347 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
| 348 |
+
encoder_outputs = self.encoder(
|
| 349 |
+
inputs_embeds=hidden_states,
|
| 350 |
+
output_hidden_states=output_hidden_states,
|
| 351 |
+
return_dict=return_dict,
|
| 352 |
+
)
|
| 353 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
| 354 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 355 |
+
|
| 356 |
+
if not return_dict:
|
| 357 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 358 |
+
|
| 359 |
+
return BaseModelOutputWithPooling(
|
| 360 |
+
last_hidden_state=last_hidden_state,
|
| 361 |
+
pooler_output=pooled_output,
|
| 362 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 363 |
+
attentions=encoder_outputs.attentions,
|
| 364 |
+
)
|
modeling_internlm2.py
ADDED
|
@@ -0,0 +1,1429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" PyTorch InternLM2 model."""
|
| 17 |
+
import math
|
| 18 |
+
import queue
|
| 19 |
+
import threading
|
| 20 |
+
import warnings
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 31 |
+
CausalLMOutputWithPast,
|
| 32 |
+
SequenceClassifierOutputWithPast)
|
| 33 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import (add_start_docstrings,
|
| 35 |
+
add_start_docstrings_to_model_forward, logging,
|
| 36 |
+
replace_return_docstrings)
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
from transformers.generation.streamers import BaseStreamer
|
| 40 |
+
except: # noqa # pylint: disable=bare-except
|
| 41 |
+
BaseStreamer = None
|
| 42 |
+
|
| 43 |
+
from .configuration_internlm2 import InternLM2Config
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
| 48 |
+
|
| 49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
| 50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
| 51 |
+
try:
|
| 52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
| 54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
| 55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 57 |
+
|
| 58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 60 |
+
has_flash_attn = True
|
| 61 |
+
except:
|
| 62 |
+
has_flash_attn = False
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _import_flash_attn():
|
| 66 |
+
global flash_attn_func, flash_attn_varlen_func
|
| 67 |
+
global pad_input, index_first_axis, unpad_input
|
| 68 |
+
try:
|
| 69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
| 70 |
+
from flash_attn import \
|
| 71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
| 72 |
+
from flash_attn.bert_padding import \
|
| 73 |
+
index_first_axis as _index_first_axis
|
| 74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
| 75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
| 76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 78 |
+
except ImportError:
|
| 79 |
+
raise ImportError('flash_attn is not installed.')
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 83 |
+
def _get_unpad_data(attention_mask):
|
| 84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 88 |
+
return (
|
| 89 |
+
indices,
|
| 90 |
+
cu_seqlens,
|
| 91 |
+
max_seqlen_in_batch,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 96 |
+
def _make_causal_mask(
|
| 97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 98 |
+
):
|
| 99 |
+
"""
|
| 100 |
+
Make causal mask used for bi-directional self-attention.
|
| 101 |
+
"""
|
| 102 |
+
bsz, tgt_len = input_ids_shape
|
| 103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 106 |
+
mask = mask.to(dtype)
|
| 107 |
+
|
| 108 |
+
if past_key_values_length > 0:
|
| 109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 115 |
+
"""
|
| 116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 117 |
+
"""
|
| 118 |
+
bsz, src_len = mask.size()
|
| 119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 120 |
+
|
| 121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 122 |
+
|
| 123 |
+
inverted_mask = 1.0 - expanded_mask
|
| 124 |
+
|
| 125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
| 129 |
+
class InternLM2RMSNorm(nn.Module):
|
| 130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 131 |
+
"""
|
| 132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
| 133 |
+
"""
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 136 |
+
self.variance_epsilon = eps
|
| 137 |
+
|
| 138 |
+
def forward(self, hidden_states):
|
| 139 |
+
input_dtype = hidden_states.dtype
|
| 140 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 143 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
from functools import partial
|
| 148 |
+
|
| 149 |
+
from apex.normalization import FusedRMSNorm
|
| 150 |
+
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
| 151 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
|
| 152 |
+
except ImportError:
|
| 153 |
+
# using the normal LlamaRMSNorm
|
| 154 |
+
pass
|
| 155 |
+
except Exception:
|
| 156 |
+
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
|
| 157 |
+
pass
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
| 161 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
| 162 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 163 |
+
super().__init__()
|
| 164 |
+
|
| 165 |
+
self.dim = dim
|
| 166 |
+
self.max_position_embeddings = max_position_embeddings
|
| 167 |
+
self.base = base
|
| 168 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 169 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 170 |
+
|
| 171 |
+
# Build here to make `torch.jit.trace` work.
|
| 172 |
+
self._set_cos_sin_cache(
|
| 173 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 177 |
+
self.max_seq_len_cached = seq_len
|
| 178 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 179 |
+
|
| 180 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 181 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 182 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 183 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 184 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 185 |
+
|
| 186 |
+
def forward(self, x, seq_len=None):
|
| 187 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 188 |
+
if seq_len > self.max_seq_len_cached:
|
| 189 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
| 190 |
+
|
| 191 |
+
return (
|
| 192 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
| 193 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
| 198 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 199 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 200 |
+
|
| 201 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 202 |
+
self.scaling_factor = scaling_factor
|
| 203 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 204 |
+
|
| 205 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 206 |
+
self.max_seq_len_cached = seq_len
|
| 207 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 208 |
+
t = t / self.scaling_factor
|
| 209 |
+
|
| 210 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 211 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 212 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 213 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 214 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
| 218 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 219 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
| 220 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 224 |
+
self.scaling_factor = scaling_factor
|
| 225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 226 |
+
|
| 227 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 228 |
+
self.max_seq_len_cached = seq_len
|
| 229 |
+
|
| 230 |
+
if seq_len > self.max_position_embeddings:
|
| 231 |
+
base = self.base * (
|
| 232 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 233 |
+
) ** (self.dim / (self.dim - 2))
|
| 234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 235 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
| 236 |
+
|
| 237 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
| 238 |
+
|
| 239 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 240 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 241 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 242 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
| 243 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
| 247 |
+
def rotate_half(x):
|
| 248 |
+
"""Rotates half the hidden dims of the input."""
|
| 249 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 250 |
+
x2 = x[..., x.shape[-1] // 2:]
|
| 251 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
| 255 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
| 256 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
| 257 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 258 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 259 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 260 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 261 |
+
return q_embed, k_embed
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class InternLM2MLP(nn.Module):
|
| 265 |
+
def __init__(self, config):
|
| 266 |
+
super().__init__()
|
| 267 |
+
self.config = config
|
| 268 |
+
self.hidden_size = config.hidden_size
|
| 269 |
+
self.intermediate_size = config.intermediate_size
|
| 270 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 271 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 272 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 273 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 274 |
+
|
| 275 |
+
def forward(self, x):
|
| 276 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
| 277 |
+
|
| 278 |
+
return down_proj
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
| 282 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 283 |
+
"""
|
| 284 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 285 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 286 |
+
"""
|
| 287 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 288 |
+
if n_rep == 1:
|
| 289 |
+
return hidden_states
|
| 290 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 291 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
| 295 |
+
class InternLM2Attention(nn.Module):
|
| 296 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 297 |
+
|
| 298 |
+
def __init__(self, config: InternLM2Config):
|
| 299 |
+
super().__init__()
|
| 300 |
+
self.config = config
|
| 301 |
+
self.hidden_size = config.hidden_size
|
| 302 |
+
self.num_heads = config.num_attention_heads
|
| 303 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 304 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 305 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 306 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 307 |
+
self.is_causal = True
|
| 308 |
+
|
| 309 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 310 |
+
raise ValueError(
|
| 311 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
| 312 |
+
f' and `num_heads`: {self.num_heads}).'
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
self.wqkv = nn.Linear(
|
| 316 |
+
self.hidden_size,
|
| 317 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 318 |
+
bias=config.bias,
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
| 322 |
+
self._init_rope()
|
| 323 |
+
|
| 324 |
+
def _init_rope(self):
|
| 325 |
+
if self.config.rope_scaling is None:
|
| 326 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
| 327 |
+
self.head_dim,
|
| 328 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 329 |
+
base=self.config.rope_theta,
|
| 330 |
+
)
|
| 331 |
+
else:
|
| 332 |
+
scaling_type = self.config.rope_scaling['type']
|
| 333 |
+
scaling_factor = self.config.rope_scaling['factor']
|
| 334 |
+
if scaling_type == 'dynamic':
|
| 335 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
| 336 |
+
self.head_dim,
|
| 337 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 338 |
+
base=self.config.rope_theta,
|
| 339 |
+
scaling_factor=scaling_factor,
|
| 340 |
+
)
|
| 341 |
+
elif scaling_type == 'linear':
|
| 342 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
| 343 |
+
self.head_dim,
|
| 344 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 345 |
+
base=self.config.rope_theta,
|
| 346 |
+
scaling_factor=scaling_factor,
|
| 347 |
+
)
|
| 348 |
+
else:
|
| 349 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
| 350 |
+
return self.rotary_emb
|
| 351 |
+
|
| 352 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 353 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 354 |
+
|
| 355 |
+
def forward(
|
| 356 |
+
self,
|
| 357 |
+
hidden_states: torch.Tensor,
|
| 358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 359 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 361 |
+
output_attentions: bool = False,
|
| 362 |
+
use_cache: bool = False,
|
| 363 |
+
**kwargs,
|
| 364 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 365 |
+
if 'padding_mask' in kwargs:
|
| 366 |
+
warnings.warn(
|
| 367 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 368 |
+
'Please make sure use `attention_mask` instead.`'
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
bsz, q_len, _ = hidden_states.size()
|
| 372 |
+
|
| 373 |
+
qkv_states = self.wqkv(hidden_states)
|
| 374 |
+
|
| 375 |
+
qkv_states = rearrange(
|
| 376 |
+
qkv_states,
|
| 377 |
+
'b q (h gs d) -> b q h gs d',
|
| 378 |
+
gs=2 + self.num_key_value_groups,
|
| 379 |
+
d=self.head_dim,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 383 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 384 |
+
key_states = qkv_states[..., -2, :]
|
| 385 |
+
value_states = qkv_states[..., -1, :]
|
| 386 |
+
|
| 387 |
+
query_states = query_states.transpose(1, 2)
|
| 388 |
+
key_states = key_states.transpose(1, 2)
|
| 389 |
+
value_states = value_states.transpose(1, 2)
|
| 390 |
+
|
| 391 |
+
kv_seq_len = key_states.shape[-2]
|
| 392 |
+
if past_key_value is not None:
|
| 393 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 394 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 395 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 396 |
+
|
| 397 |
+
if past_key_value is not None:
|
| 398 |
+
# reuse k, v, self_attention
|
| 399 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 400 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 401 |
+
|
| 402 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 403 |
+
|
| 404 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 405 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 406 |
+
|
| 407 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 408 |
+
|
| 409 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 410 |
+
raise ValueError(
|
| 411 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
| 412 |
+
f' {attn_weights.size()}'
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
if attention_mask is not None:
|
| 416 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 417 |
+
raise ValueError(
|
| 418 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 419 |
+
)
|
| 420 |
+
attn_weights = attn_weights + attention_mask
|
| 421 |
+
|
| 422 |
+
# upcast attention to fp32
|
| 423 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 424 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 425 |
+
|
| 426 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 427 |
+
raise ValueError(
|
| 428 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
| 429 |
+
f' {attn_output.size()}'
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 433 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 434 |
+
|
| 435 |
+
attn_output = self.wo(attn_output)
|
| 436 |
+
|
| 437 |
+
if not output_attentions:
|
| 438 |
+
attn_weights = None
|
| 439 |
+
|
| 440 |
+
return attn_output, attn_weights, past_key_value
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
| 444 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
| 445 |
+
"""
|
| 446 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
| 447 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 448 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 449 |
+
"""
|
| 450 |
+
|
| 451 |
+
def forward(
|
| 452 |
+
self,
|
| 453 |
+
hidden_states: torch.Tensor,
|
| 454 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 455 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 456 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 457 |
+
output_attentions: bool = False,
|
| 458 |
+
use_cache: bool = False,
|
| 459 |
+
**kwargs,
|
| 460 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 461 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
| 462 |
+
if 'padding_mask' in kwargs:
|
| 463 |
+
warnings.warn(
|
| 464 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 465 |
+
'Please make sure use `attention_mask` instead.`'
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
# overwrite attention_mask with padding_mask
|
| 469 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 470 |
+
|
| 471 |
+
output_attentions = False
|
| 472 |
+
|
| 473 |
+
bsz, q_len, _ = hidden_states.size()
|
| 474 |
+
|
| 475 |
+
qkv_states = self.wqkv(hidden_states)
|
| 476 |
+
|
| 477 |
+
qkv_states = rearrange(
|
| 478 |
+
qkv_states,
|
| 479 |
+
'b q (h gs d) -> b q h gs d',
|
| 480 |
+
gs=2 + self.num_key_value_groups,
|
| 481 |
+
d=self.head_dim,
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 485 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 486 |
+
key_states = qkv_states[..., -2, :]
|
| 487 |
+
value_states = qkv_states[..., -1, :]
|
| 488 |
+
|
| 489 |
+
query_states = query_states.transpose(1, 2)
|
| 490 |
+
key_states = key_states.transpose(1, 2)
|
| 491 |
+
value_states = value_states.transpose(1, 2)
|
| 492 |
+
|
| 493 |
+
kv_seq_len = key_states.shape[-2]
|
| 494 |
+
if past_key_value is not None:
|
| 495 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 496 |
+
|
| 497 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 498 |
+
|
| 499 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 500 |
+
|
| 501 |
+
if past_key_value is not None:
|
| 502 |
+
# reuse k, v, self_attention
|
| 503 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 504 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 505 |
+
|
| 506 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 507 |
+
|
| 508 |
+
query_states = query_states.transpose(1, 2)
|
| 509 |
+
key_states = key_states.transpose(1, 2)
|
| 510 |
+
value_states = value_states.transpose(1, 2)
|
| 511 |
+
|
| 512 |
+
attn_output = self._flash_attention_forward(
|
| 513 |
+
query_states, key_states, value_states, attention_mask, q_len
|
| 514 |
+
)
|
| 515 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 516 |
+
attn_output = self.wo(attn_output)
|
| 517 |
+
|
| 518 |
+
if not output_attentions:
|
| 519 |
+
attn_weights = None
|
| 520 |
+
|
| 521 |
+
return attn_output, attn_weights, past_key_value
|
| 522 |
+
|
| 523 |
+
def _flash_attention_forward(
|
| 524 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 525 |
+
):
|
| 526 |
+
"""
|
| 527 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 528 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 529 |
+
|
| 530 |
+
Args:
|
| 531 |
+
query_states (`torch.Tensor`):
|
| 532 |
+
Input query states to be passed to Flash Attention API
|
| 533 |
+
key_states (`torch.Tensor`):
|
| 534 |
+
Input key states to be passed to Flash Attention API
|
| 535 |
+
value_states (`torch.Tensor`):
|
| 536 |
+
Input value states to be passed to Flash Attention API
|
| 537 |
+
attention_mask (`torch.Tensor`):
|
| 538 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 539 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 540 |
+
dropout (`int`, *optional*):
|
| 541 |
+
Attention dropout
|
| 542 |
+
softmax_scale (`float`, *optional*):
|
| 543 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 544 |
+
"""
|
| 545 |
+
# Contains at least one padding token in the sequence
|
| 546 |
+
causal = self.is_causal and query_length != 1
|
| 547 |
+
if attention_mask is not None:
|
| 548 |
+
batch_size = query_states.shape[0]
|
| 549 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
| 550 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 554 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 555 |
+
|
| 556 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 557 |
+
query_states,
|
| 558 |
+
key_states,
|
| 559 |
+
value_states,
|
| 560 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 561 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 562 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 563 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 564 |
+
dropout_p=dropout,
|
| 565 |
+
softmax_scale=softmax_scale,
|
| 566 |
+
causal=causal,
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 570 |
+
else:
|
| 571 |
+
attn_output = flash_attn_func(
|
| 572 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
return attn_output
|
| 576 |
+
|
| 577 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 578 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 579 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 580 |
+
|
| 581 |
+
key_layer = index_first_axis(
|
| 582 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 583 |
+
)
|
| 584 |
+
value_layer = index_first_axis(
|
| 585 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
if query_length == kv_seq_len:
|
| 589 |
+
query_layer = index_first_axis(
|
| 590 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 591 |
+
)
|
| 592 |
+
cu_seqlens_q = cu_seqlens_k
|
| 593 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 594 |
+
indices_q = indices_k
|
| 595 |
+
elif query_length == 1:
|
| 596 |
+
max_seqlen_in_batch_q = 1
|
| 597 |
+
cu_seqlens_q = torch.arange(
|
| 598 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 599 |
+
) # There is a memcpy here, that is very bad.
|
| 600 |
+
indices_q = cu_seqlens_q[:-1]
|
| 601 |
+
query_layer = query_layer.squeeze(1)
|
| 602 |
+
else:
|
| 603 |
+
# The -q_len: slice assumes left padding.
|
| 604 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 605 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 606 |
+
|
| 607 |
+
return (
|
| 608 |
+
query_layer,
|
| 609 |
+
key_layer,
|
| 610 |
+
value_layer,
|
| 611 |
+
indices_q.to(torch.int64),
|
| 612 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 613 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
| 618 |
+
'eager': InternLM2Attention,
|
| 619 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
| 624 |
+
class InternLM2DecoderLayer(nn.Module):
|
| 625 |
+
def __init__(self, config: InternLM2Config):
|
| 626 |
+
super().__init__()
|
| 627 |
+
self.hidden_size = config.hidden_size
|
| 628 |
+
|
| 629 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
| 630 |
+
|
| 631 |
+
self.feed_forward = InternLM2MLP(config)
|
| 632 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 633 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 634 |
+
|
| 635 |
+
def forward(
|
| 636 |
+
self,
|
| 637 |
+
hidden_states: torch.Tensor,
|
| 638 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 639 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 640 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 641 |
+
output_attentions: Optional[bool] = False,
|
| 642 |
+
use_cache: Optional[bool] = False,
|
| 643 |
+
**kwargs,
|
| 644 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 645 |
+
"""
|
| 646 |
+
Args:
|
| 647 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 648 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 649 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 650 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 651 |
+
output_attentions (`bool`, *optional*):
|
| 652 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 653 |
+
returned tensors for more detail.
|
| 654 |
+
use_cache (`bool`, *optional*):
|
| 655 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 656 |
+
(see `past_key_values`).
|
| 657 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 658 |
+
"""
|
| 659 |
+
if 'padding_mask' in kwargs:
|
| 660 |
+
warnings.warn(
|
| 661 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 662 |
+
'Please make sure use `attention_mask` instead.`'
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
residual = hidden_states
|
| 666 |
+
|
| 667 |
+
hidden_states = self.attention_norm(hidden_states)
|
| 668 |
+
|
| 669 |
+
# Self Attention
|
| 670 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
| 671 |
+
hidden_states=hidden_states,
|
| 672 |
+
attention_mask=attention_mask,
|
| 673 |
+
position_ids=position_ids,
|
| 674 |
+
past_key_value=past_key_value,
|
| 675 |
+
output_attentions=output_attentions,
|
| 676 |
+
use_cache=use_cache,
|
| 677 |
+
**kwargs,
|
| 678 |
+
)
|
| 679 |
+
hidden_states = residual + hidden_states
|
| 680 |
+
|
| 681 |
+
# Fully Connected
|
| 682 |
+
residual = hidden_states
|
| 683 |
+
hidden_states = self.ffn_norm(hidden_states)
|
| 684 |
+
hidden_states = self.feed_forward(hidden_states)
|
| 685 |
+
hidden_states = residual + hidden_states
|
| 686 |
+
|
| 687 |
+
outputs = (hidden_states,)
|
| 688 |
+
|
| 689 |
+
if output_attentions:
|
| 690 |
+
outputs += (self_attn_weights,)
|
| 691 |
+
|
| 692 |
+
if use_cache:
|
| 693 |
+
outputs += (present_key_value,)
|
| 694 |
+
|
| 695 |
+
return outputs
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
InternLM2_START_DOCSTRING = r"""
|
| 699 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 700 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 701 |
+
etc.)
|
| 702 |
+
|
| 703 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 704 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 705 |
+
and behavior.
|
| 706 |
+
|
| 707 |
+
Parameters:
|
| 708 |
+
config ([`InternLM2Config`]):
|
| 709 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 710 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 711 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 712 |
+
"""
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
| 716 |
+
@add_start_docstrings(
|
| 717 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 718 |
+
InternLM2_START_DOCSTRING,
|
| 719 |
+
)
|
| 720 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
| 721 |
+
config_class = InternLM2Config
|
| 722 |
+
base_model_prefix = 'model'
|
| 723 |
+
supports_gradient_checkpointing = True
|
| 724 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
| 725 |
+
_skip_keys_device_placement = 'past_key_values'
|
| 726 |
+
_supports_flash_attn_2 = True
|
| 727 |
+
|
| 728 |
+
def _init_weights(self, module):
|
| 729 |
+
std = self.config.initializer_range
|
| 730 |
+
if isinstance(module, nn.Linear):
|
| 731 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 732 |
+
if module.bias is not None:
|
| 733 |
+
module.bias.data.zero_()
|
| 734 |
+
elif isinstance(module, nn.Embedding):
|
| 735 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 736 |
+
if module.padding_idx is not None:
|
| 737 |
+
module.weight.data[module.padding_idx].zero_()
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
| 741 |
+
Args:
|
| 742 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 743 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 744 |
+
it.
|
| 745 |
+
|
| 746 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 747 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 748 |
+
|
| 749 |
+
[What are input IDs?](../glossary#input-ids)
|
| 750 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 751 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 752 |
+
|
| 753 |
+
- 1 for tokens that are **not masked**,
|
| 754 |
+
- 0 for tokens that are **masked**.
|
| 755 |
+
|
| 756 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 757 |
+
|
| 758 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 759 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 760 |
+
|
| 761 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 762 |
+
`past_key_values`).
|
| 763 |
+
|
| 764 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 765 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 766 |
+
information on the default strategy.
|
| 767 |
+
|
| 768 |
+
- 1 indicates the head is **not masked**,
|
| 769 |
+
- 0 indicates the head is **masked**.
|
| 770 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 771 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 772 |
+
config.n_positions - 1]`.
|
| 773 |
+
|
| 774 |
+
[What are position IDs?](../glossary#position-ids)
|
| 775 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
| 776 |
+
when `config.use_cache=True`):
|
| 777 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 778 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 779 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
| 780 |
+
|
| 781 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 782 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 783 |
+
|
| 784 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 785 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 786 |
+
of shape `(batch_size, sequence_length)`.
|
| 787 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 788 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 789 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 790 |
+
model's internal embedding lookup matrix.
|
| 791 |
+
use_cache (`bool`, *optional*):
|
| 792 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 793 |
+
`past_key_values`).
|
| 794 |
+
output_attentions (`bool`, *optional*):
|
| 795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 796 |
+
tensors for more detail.
|
| 797 |
+
output_hidden_states (`bool`, *optional*):
|
| 798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 799 |
+
more detail.
|
| 800 |
+
return_dict (`bool`, *optional*):
|
| 801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
| 806 |
+
@add_start_docstrings(
|
| 807 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
| 808 |
+
InternLM2_START_DOCSTRING,
|
| 809 |
+
)
|
| 810 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
| 811 |
+
"""
|
| 812 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
| 813 |
+
|
| 814 |
+
Args:
|
| 815 |
+
config: InternLM2Config
|
| 816 |
+
"""
|
| 817 |
+
|
| 818 |
+
_auto_class = 'AutoModel'
|
| 819 |
+
|
| 820 |
+
def __init__(self, config: InternLM2Config):
|
| 821 |
+
super().__init__(config)
|
| 822 |
+
self.padding_idx = config.pad_token_id
|
| 823 |
+
self.vocab_size = config.vocab_size
|
| 824 |
+
self.config = config
|
| 825 |
+
if not has_flash_attn:
|
| 826 |
+
self.config.attn_implementation = 'eager'
|
| 827 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
| 828 |
+
|
| 829 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 830 |
+
|
| 831 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 832 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 833 |
+
|
| 834 |
+
self.gradient_checkpointing = False
|
| 835 |
+
# Initialize weights and apply final processing
|
| 836 |
+
self.post_init()
|
| 837 |
+
|
| 838 |
+
def get_input_embeddings(self):
|
| 839 |
+
return self.tok_embeddings
|
| 840 |
+
|
| 841 |
+
def set_input_embeddings(self, value):
|
| 842 |
+
self.tok_embeddings = value
|
| 843 |
+
|
| 844 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 845 |
+
# create causal mask
|
| 846 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 847 |
+
combined_attention_mask = None
|
| 848 |
+
if input_shape[-1] > 1:
|
| 849 |
+
combined_attention_mask = _make_causal_mask(
|
| 850 |
+
input_shape,
|
| 851 |
+
inputs_embeds.dtype,
|
| 852 |
+
device=inputs_embeds.device,
|
| 853 |
+
past_key_values_length=past_key_values_length,
|
| 854 |
+
)
|
| 855 |
+
|
| 856 |
+
if attention_mask is not None:
|
| 857 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 858 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 859 |
+
inputs_embeds.device
|
| 860 |
+
)
|
| 861 |
+
combined_attention_mask = (
|
| 862 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
return combined_attention_mask
|
| 866 |
+
|
| 867 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 868 |
+
def forward(
|
| 869 |
+
self,
|
| 870 |
+
input_ids: torch.LongTensor = None,
|
| 871 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 872 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 873 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 874 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 875 |
+
use_cache: Optional[bool] = None,
|
| 876 |
+
output_attentions: Optional[bool] = None,
|
| 877 |
+
output_hidden_states: Optional[bool] = None,
|
| 878 |
+
return_dict: Optional[bool] = None,
|
| 879 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 880 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 881 |
+
output_hidden_states = (
|
| 882 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 883 |
+
)
|
| 884 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 885 |
+
|
| 886 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 887 |
+
|
| 888 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 889 |
+
_import_flash_attn()
|
| 890 |
+
|
| 891 |
+
# retrieve input_ids and inputs_embeds
|
| 892 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 893 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
| 894 |
+
elif input_ids is not None:
|
| 895 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 896 |
+
elif inputs_embeds is not None:
|
| 897 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 898 |
+
else:
|
| 899 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
| 900 |
+
|
| 901 |
+
seq_length_with_past = seq_length
|
| 902 |
+
past_key_values_length = 0
|
| 903 |
+
if past_key_values is not None:
|
| 904 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 905 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 906 |
+
|
| 907 |
+
if position_ids is None:
|
| 908 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 909 |
+
position_ids = torch.arange(
|
| 910 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 911 |
+
)
|
| 912 |
+
position_ids = position_ids.unsqueeze(0)
|
| 913 |
+
|
| 914 |
+
if inputs_embeds is None:
|
| 915 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
| 916 |
+
|
| 917 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
| 918 |
+
# 2d mask is passed through the layers
|
| 919 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 920 |
+
else:
|
| 921 |
+
if attention_mask is None:
|
| 922 |
+
attention_mask = torch.ones(
|
| 923 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 924 |
+
)
|
| 925 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
| 926 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
# embed positions
|
| 930 |
+
hidden_states = inputs_embeds
|
| 931 |
+
|
| 932 |
+
if self.gradient_checkpointing and self.training:
|
| 933 |
+
if use_cache:
|
| 934 |
+
logger.warning_once(
|
| 935 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
| 936 |
+
)
|
| 937 |
+
use_cache = False
|
| 938 |
+
|
| 939 |
+
# decoder layers
|
| 940 |
+
all_hidden_states = () if output_hidden_states else None
|
| 941 |
+
all_self_attns = () if output_attentions else None
|
| 942 |
+
next_decoder_cache = () if use_cache else None
|
| 943 |
+
|
| 944 |
+
for idx, decoder_layer in enumerate(self.layers):
|
| 945 |
+
if output_hidden_states:
|
| 946 |
+
all_hidden_states += (hidden_states,)
|
| 947 |
+
|
| 948 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 949 |
+
|
| 950 |
+
if self.gradient_checkpointing and self.training:
|
| 951 |
+
|
| 952 |
+
def create_custom_forward(module):
|
| 953 |
+
def custom_forward(*inputs):
|
| 954 |
+
# None for past_key_value
|
| 955 |
+
return module(*inputs, output_attentions, None)
|
| 956 |
+
|
| 957 |
+
return custom_forward
|
| 958 |
+
|
| 959 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 960 |
+
create_custom_forward(decoder_layer),
|
| 961 |
+
hidden_states,
|
| 962 |
+
attention_mask,
|
| 963 |
+
position_ids,
|
| 964 |
+
None,
|
| 965 |
+
)
|
| 966 |
+
else:
|
| 967 |
+
layer_outputs = decoder_layer(
|
| 968 |
+
hidden_states,
|
| 969 |
+
attention_mask=attention_mask,
|
| 970 |
+
position_ids=position_ids,
|
| 971 |
+
past_key_value=past_key_value,
|
| 972 |
+
output_attentions=output_attentions,
|
| 973 |
+
use_cache=use_cache,
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
hidden_states = layer_outputs[0]
|
| 977 |
+
|
| 978 |
+
if use_cache:
|
| 979 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 980 |
+
|
| 981 |
+
if output_attentions:
|
| 982 |
+
all_self_attns += (layer_outputs[1],)
|
| 983 |
+
|
| 984 |
+
hidden_states = self.norm(hidden_states)
|
| 985 |
+
|
| 986 |
+
# add hidden states from the last decoder layer
|
| 987 |
+
if output_hidden_states:
|
| 988 |
+
all_hidden_states += (hidden_states,)
|
| 989 |
+
|
| 990 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 991 |
+
if not return_dict:
|
| 992 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 993 |
+
return BaseModelOutputWithPast(
|
| 994 |
+
last_hidden_state=hidden_states,
|
| 995 |
+
past_key_values=next_cache,
|
| 996 |
+
hidden_states=all_hidden_states,
|
| 997 |
+
attentions=all_self_attns,
|
| 998 |
+
)
|
| 999 |
+
|
| 1000 |
+
|
| 1001 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
| 1002 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
| 1003 |
+
_auto_class = 'AutoModelForCausalLM'
|
| 1004 |
+
|
| 1005 |
+
_tied_weights_keys = ['output.weight']
|
| 1006 |
+
|
| 1007 |
+
def __init__(self, config):
|
| 1008 |
+
super().__init__(config)
|
| 1009 |
+
self.model = InternLM2Model(config)
|
| 1010 |
+
self.vocab_size = config.vocab_size
|
| 1011 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1012 |
+
|
| 1013 |
+
# Initialize weights and apply final processing
|
| 1014 |
+
self.post_init()
|
| 1015 |
+
|
| 1016 |
+
def get_input_embeddings(self):
|
| 1017 |
+
return self.model.tok_embeddings
|
| 1018 |
+
|
| 1019 |
+
def set_input_embeddings(self, value):
|
| 1020 |
+
self.model.tok_embeddings = value
|
| 1021 |
+
|
| 1022 |
+
def get_output_embeddings(self):
|
| 1023 |
+
return self.output
|
| 1024 |
+
|
| 1025 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1026 |
+
self.output = new_embeddings
|
| 1027 |
+
|
| 1028 |
+
def set_decoder(self, decoder):
|
| 1029 |
+
self.model = decoder
|
| 1030 |
+
|
| 1031 |
+
def get_decoder(self):
|
| 1032 |
+
return self.model
|
| 1033 |
+
|
| 1034 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1035 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1036 |
+
def forward(
|
| 1037 |
+
self,
|
| 1038 |
+
input_ids: torch.LongTensor = None,
|
| 1039 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1041 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1043 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1044 |
+
use_cache: Optional[bool] = None,
|
| 1045 |
+
output_attentions: Optional[bool] = None,
|
| 1046 |
+
output_hidden_states: Optional[bool] = None,
|
| 1047 |
+
return_dict: Optional[bool] = None,
|
| 1048 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1049 |
+
r"""
|
| 1050 |
+
Args:
|
| 1051 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1052 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1053 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1054 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1055 |
+
|
| 1056 |
+
Returns:
|
| 1057 |
+
|
| 1058 |
+
Example:
|
| 1059 |
+
|
| 1060 |
+
```python
|
| 1061 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
| 1062 |
+
|
| 1063 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 1064 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 1065 |
+
|
| 1066 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1067 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1068 |
+
|
| 1069 |
+
>>> # Generate
|
| 1070 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1071 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1072 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1073 |
+
```"""
|
| 1074 |
+
|
| 1075 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1076 |
+
output_hidden_states = (
|
| 1077 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1078 |
+
)
|
| 1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1080 |
+
|
| 1081 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1082 |
+
outputs = self.model(
|
| 1083 |
+
input_ids=input_ids,
|
| 1084 |
+
attention_mask=attention_mask,
|
| 1085 |
+
position_ids=position_ids,
|
| 1086 |
+
past_key_values=past_key_values,
|
| 1087 |
+
inputs_embeds=inputs_embeds,
|
| 1088 |
+
use_cache=use_cache,
|
| 1089 |
+
output_attentions=output_attentions,
|
| 1090 |
+
output_hidden_states=output_hidden_states,
|
| 1091 |
+
return_dict=return_dict,
|
| 1092 |
+
)
|
| 1093 |
+
|
| 1094 |
+
hidden_states = outputs[0]
|
| 1095 |
+
logits = self.output(hidden_states)
|
| 1096 |
+
logits = logits.float()
|
| 1097 |
+
|
| 1098 |
+
loss = None
|
| 1099 |
+
if labels is not None:
|
| 1100 |
+
# Shift so that tokens < n predict n
|
| 1101 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1102 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1103 |
+
# Flatten the tokens
|
| 1104 |
+
loss_fct = CrossEntropyLoss()
|
| 1105 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1106 |
+
shift_labels = shift_labels.view(-1)
|
| 1107 |
+
# Enable model parallelism
|
| 1108 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1109 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1110 |
+
|
| 1111 |
+
if not return_dict:
|
| 1112 |
+
output = (logits,) + outputs[1:]
|
| 1113 |
+
return (loss,) + output if loss is not None else output
|
| 1114 |
+
|
| 1115 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1116 |
+
output = CausalLMOutputWithPast(
|
| 1117 |
+
loss=loss,
|
| 1118 |
+
logits=logits,
|
| 1119 |
+
past_key_values=outputs.past_key_values,
|
| 1120 |
+
hidden_states=outputs.hidden_states,
|
| 1121 |
+
attentions=outputs.attentions,
|
| 1122 |
+
)
|
| 1123 |
+
output['logits'] = output['logits'].to(device)
|
| 1124 |
+
return output
|
| 1125 |
+
|
| 1126 |
+
def prepare_inputs_for_generation(
|
| 1127 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1128 |
+
):
|
| 1129 |
+
if past_key_values is not None:
|
| 1130 |
+
past_length = past_key_values[0][0].shape[2]
|
| 1131 |
+
|
| 1132 |
+
# Some generation methods already pass only the last input ID
|
| 1133 |
+
if input_ids.shape[1] > past_length:
|
| 1134 |
+
remove_prefix_length = past_length
|
| 1135 |
+
else:
|
| 1136 |
+
# Default to old behavior: keep only final ID
|
| 1137 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1138 |
+
|
| 1139 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1140 |
+
|
| 1141 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1142 |
+
if attention_mask is not None and position_ids is None:
|
| 1143 |
+
# create position_ids on the fly for batch generation
|
| 1144 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1145 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1146 |
+
if past_key_values:
|
| 1147 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 1148 |
+
|
| 1149 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1150 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1151 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1152 |
+
else:
|
| 1153 |
+
model_inputs = {'input_ids': input_ids}
|
| 1154 |
+
|
| 1155 |
+
model_inputs.update(
|
| 1156 |
+
{
|
| 1157 |
+
'position_ids': position_ids,
|
| 1158 |
+
'past_key_values': past_key_values,
|
| 1159 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1160 |
+
'attention_mask': attention_mask,
|
| 1161 |
+
}
|
| 1162 |
+
)
|
| 1163 |
+
return model_inputs
|
| 1164 |
+
|
| 1165 |
+
@staticmethod
|
| 1166 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1167 |
+
reordered_past = ()
|
| 1168 |
+
for layer_past in past_key_values:
|
| 1169 |
+
reordered_past += (
|
| 1170 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1171 |
+
)
|
| 1172 |
+
return reordered_past
|
| 1173 |
+
|
| 1174 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
| 1175 |
+
if tokenizer.add_bos_token:
|
| 1176 |
+
prompt = ''
|
| 1177 |
+
else:
|
| 1178 |
+
prompt = tokenizer.bos_token
|
| 1179 |
+
if meta_instruction:
|
| 1180 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
| 1181 |
+
for record in history:
|
| 1182 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
| 1183 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
| 1184 |
+
return tokenizer([prompt], return_tensors='pt')
|
| 1185 |
+
|
| 1186 |
+
@torch.no_grad()
|
| 1187 |
+
def chat(
|
| 1188 |
+
self,
|
| 1189 |
+
tokenizer,
|
| 1190 |
+
query: str,
|
| 1191 |
+
history: List[Tuple[str, str]] = [],
|
| 1192 |
+
streamer: Optional[BaseStreamer] = None,
|
| 1193 |
+
max_new_tokens: int = 1024,
|
| 1194 |
+
do_sample: bool = True,
|
| 1195 |
+
temperature: float = 0.8,
|
| 1196 |
+
top_p: float = 0.8,
|
| 1197 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
| 1198 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
| 1199 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
| 1200 |
+
**kwargs,
|
| 1201 |
+
):
|
| 1202 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1203 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1204 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
| 1205 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
|
| 1206 |
+
outputs = self.generate(
|
| 1207 |
+
**inputs,
|
| 1208 |
+
streamer=streamer,
|
| 1209 |
+
max_new_tokens=max_new_tokens,
|
| 1210 |
+
do_sample=do_sample,
|
| 1211 |
+
temperature=temperature,
|
| 1212 |
+
top_p=top_p,
|
| 1213 |
+
eos_token_id=eos_token_id,
|
| 1214 |
+
**kwargs,
|
| 1215 |
+
)
|
| 1216 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
| 1217 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
| 1218 |
+
response = response.split('<|im_end|>')[0]
|
| 1219 |
+
history = history + [(query, response)]
|
| 1220 |
+
return response, history
|
| 1221 |
+
|
| 1222 |
+
@torch.no_grad()
|
| 1223 |
+
def stream_chat(
|
| 1224 |
+
self,
|
| 1225 |
+
tokenizer,
|
| 1226 |
+
query: str,
|
| 1227 |
+
history: List[Tuple[str, str]] = [],
|
| 1228 |
+
max_new_tokens: int = 1024,
|
| 1229 |
+
do_sample: bool = True,
|
| 1230 |
+
temperature: float = 0.8,
|
| 1231 |
+
top_p: float = 0.8,
|
| 1232 |
+
**kwargs,
|
| 1233 |
+
):
|
| 1234 |
+
"""
|
| 1235 |
+
Return a generator in format: (response, history)
|
| 1236 |
+
Eg.
|
| 1237 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
| 1238 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
| 1239 |
+
"""
|
| 1240 |
+
if BaseStreamer is None:
|
| 1241 |
+
raise ModuleNotFoundError(
|
| 1242 |
+
'The version of `transformers` is too low. Please make sure '
|
| 1243 |
+
'that you have installed `transformers>=4.28.0`.'
|
| 1244 |
+
)
|
| 1245 |
+
|
| 1246 |
+
response_queue = queue.Queue(maxsize=20)
|
| 1247 |
+
|
| 1248 |
+
class ChatStreamer(BaseStreamer):
|
| 1249 |
+
def __init__(self, tokenizer) -> None:
|
| 1250 |
+
super().__init__()
|
| 1251 |
+
self.tokenizer = tokenizer
|
| 1252 |
+
self.queue = response_queue
|
| 1253 |
+
self.query = query
|
| 1254 |
+
self.history = history
|
| 1255 |
+
self.response = ''
|
| 1256 |
+
self.cache = []
|
| 1257 |
+
self.received_inputs = False
|
| 1258 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
| 1259 |
+
|
| 1260 |
+
def put(self, value):
|
| 1261 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
| 1262 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
| 1263 |
+
elif len(value.shape) > 1:
|
| 1264 |
+
value = value[0]
|
| 1265 |
+
|
| 1266 |
+
if not self.received_inputs:
|
| 1267 |
+
# The first received value is input_ids, ignore here
|
| 1268 |
+
self.received_inputs = True
|
| 1269 |
+
return
|
| 1270 |
+
|
| 1271 |
+
self.cache.extend(value.tolist())
|
| 1272 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
| 1273 |
+
if token.strip() != '<|im_end|>':
|
| 1274 |
+
self.response = self.response + token
|
| 1275 |
+
history = self.history + [(self.query, self.response)]
|
| 1276 |
+
self.queue.put((self.response, history))
|
| 1277 |
+
self.cache = []
|
| 1278 |
+
else:
|
| 1279 |
+
self.end()
|
| 1280 |
+
|
| 1281 |
+
def end(self):
|
| 1282 |
+
self.queue.put(None)
|
| 1283 |
+
|
| 1284 |
+
def stream_producer():
|
| 1285 |
+
return self.chat(
|
| 1286 |
+
tokenizer=tokenizer,
|
| 1287 |
+
query=query,
|
| 1288 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
| 1289 |
+
history=history,
|
| 1290 |
+
max_new_tokens=max_new_tokens,
|
| 1291 |
+
do_sample=do_sample,
|
| 1292 |
+
temperature=temperature,
|
| 1293 |
+
top_p=top_p,
|
| 1294 |
+
**kwargs,
|
| 1295 |
+
)
|
| 1296 |
+
|
| 1297 |
+
def consumer():
|
| 1298 |
+
producer = threading.Thread(target=stream_producer)
|
| 1299 |
+
producer.start()
|
| 1300 |
+
while True:
|
| 1301 |
+
res = response_queue.get()
|
| 1302 |
+
if res is None:
|
| 1303 |
+
return
|
| 1304 |
+
yield res
|
| 1305 |
+
|
| 1306 |
+
return consumer()
|
| 1307 |
+
|
| 1308 |
+
|
| 1309 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
| 1310 |
+
@add_start_docstrings(
|
| 1311 |
+
"""
|
| 1312 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1313 |
+
|
| 1314 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
| 1315 |
+
as other causal models (e.g. GPT-2) do.
|
| 1316 |
+
|
| 1317 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1318 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1319 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1320 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1321 |
+
each row of the batch).
|
| 1322 |
+
""",
|
| 1323 |
+
InternLM2_START_DOCSTRING,
|
| 1324 |
+
)
|
| 1325 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
| 1326 |
+
def __init__(self, config):
|
| 1327 |
+
super().__init__(config)
|
| 1328 |
+
self.num_labels = config.num_labels
|
| 1329 |
+
self.model = InternLM2Model(config)
|
| 1330 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1331 |
+
|
| 1332 |
+
# Initialize weights and apply final processing
|
| 1333 |
+
self.post_init()
|
| 1334 |
+
|
| 1335 |
+
def get_input_embeddings(self):
|
| 1336 |
+
return self.model.tok_embeddings
|
| 1337 |
+
|
| 1338 |
+
def set_input_embeddings(self, value):
|
| 1339 |
+
self.model.tok_embeddings = value
|
| 1340 |
+
|
| 1341 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1342 |
+
def forward(
|
| 1343 |
+
self,
|
| 1344 |
+
input_ids: torch.LongTensor = None,
|
| 1345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1347 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1349 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1350 |
+
use_cache: Optional[bool] = None,
|
| 1351 |
+
output_attentions: Optional[bool] = None,
|
| 1352 |
+
output_hidden_states: Optional[bool] = None,
|
| 1353 |
+
return_dict: Optional[bool] = None,
|
| 1354 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1355 |
+
r"""
|
| 1356 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1357 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1358 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1359 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1360 |
+
"""
|
| 1361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1362 |
+
|
| 1363 |
+
transformer_outputs = self.model(
|
| 1364 |
+
input_ids,
|
| 1365 |
+
attention_mask=attention_mask,
|
| 1366 |
+
position_ids=position_ids,
|
| 1367 |
+
past_key_values=past_key_values,
|
| 1368 |
+
inputs_embeds=inputs_embeds,
|
| 1369 |
+
use_cache=use_cache,
|
| 1370 |
+
output_attentions=output_attentions,
|
| 1371 |
+
output_hidden_states=output_hidden_states,
|
| 1372 |
+
return_dict=return_dict,
|
| 1373 |
+
)
|
| 1374 |
+
hidden_states = transformer_outputs[0]
|
| 1375 |
+
logits = self.score(hidden_states)
|
| 1376 |
+
|
| 1377 |
+
if input_ids is not None:
|
| 1378 |
+
batch_size = input_ids.shape[0]
|
| 1379 |
+
else:
|
| 1380 |
+
batch_size = inputs_embeds.shape[0]
|
| 1381 |
+
|
| 1382 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1383 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
| 1384 |
+
if self.config.pad_token_id is None:
|
| 1385 |
+
sequence_lengths = -1
|
| 1386 |
+
else:
|
| 1387 |
+
if input_ids is not None:
|
| 1388 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
| 1389 |
+
logits.device
|
| 1390 |
+
)
|
| 1391 |
+
else:
|
| 1392 |
+
sequence_lengths = -1
|
| 1393 |
+
|
| 1394 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1395 |
+
|
| 1396 |
+
loss = None
|
| 1397 |
+
if labels is not None:
|
| 1398 |
+
labels = labels.to(logits.device)
|
| 1399 |
+
if self.config.problem_type is None:
|
| 1400 |
+
if self.num_labels == 1:
|
| 1401 |
+
self.config.problem_type = 'regression'
|
| 1402 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1403 |
+
self.config.problem_type = 'single_label_classification'
|
| 1404 |
+
else:
|
| 1405 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1406 |
+
|
| 1407 |
+
if self.config.problem_type == 'regression':
|
| 1408 |
+
loss_fct = MSELoss()
|
| 1409 |
+
if self.num_labels == 1:
|
| 1410 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1411 |
+
else:
|
| 1412 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1413 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1414 |
+
loss_fct = CrossEntropyLoss()
|
| 1415 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1416 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1417 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1418 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1419 |
+
if not return_dict:
|
| 1420 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1421 |
+
return ((loss,) + output) if loss is not None else output
|
| 1422 |
+
|
| 1423 |
+
return SequenceClassifierOutputWithPast(
|
| 1424 |
+
loss=loss,
|
| 1425 |
+
logits=pooled_logits,
|
| 1426 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1427 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1428 |
+
attentions=transformer_outputs.attentions,
|
| 1429 |
+
)
|
modeling_phi3.py
ADDED
|
@@ -0,0 +1,1610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
""" PyTorch Phi-3 model."""
|
| 16 |
+
|
| 17 |
+
import inspect
|
| 18 |
+
import math
|
| 19 |
+
import warnings
|
| 20 |
+
from typing import List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
import torch.utils.checkpoint
|
| 25 |
+
from torch import nn
|
| 26 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 27 |
+
from transformers.activations import ACT2FN
|
| 28 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 29 |
+
from transformers.modeling_attn_mask_utils import \
|
| 30 |
+
_prepare_4d_causal_attention_mask
|
| 31 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 32 |
+
CausalLMOutputWithPast,
|
| 33 |
+
SequenceClassifierOutputWithPast,
|
| 34 |
+
TokenClassifierOutput)
|
| 35 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 36 |
+
from transformers.utils import (add_code_sample_docstrings,
|
| 37 |
+
add_start_docstrings,
|
| 38 |
+
add_start_docstrings_to_model_forward,
|
| 39 |
+
is_flash_attn_2_available,
|
| 40 |
+
is_flash_attn_greater_or_equal_2_10, logging,
|
| 41 |
+
replace_return_docstrings)
|
| 42 |
+
|
| 43 |
+
from .configuration_phi3 import Phi3Config
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
# Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
|
| 48 |
+
# if is_flash_attn_2_available():
|
| 49 |
+
_flash_supports_window_size = False
|
| 50 |
+
try:
|
| 51 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 52 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
|
| 53 |
+
unpad_input)
|
| 54 |
+
|
| 55 |
+
_flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
|
| 56 |
+
has_flash_attn = True
|
| 57 |
+
except ImportError as error:
|
| 58 |
+
logger.warning(
|
| 59 |
+
f'`flash-attention` package not found, consider installing for better performance: {error}.'
|
| 60 |
+
)
|
| 61 |
+
if not _flash_supports_window_size:
|
| 62 |
+
logger.warning(
|
| 63 |
+
"Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
|
| 64 |
+
)
|
| 65 |
+
has_flash_attn = False
|
| 66 |
+
|
| 67 |
+
_CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
|
| 68 |
+
_CONFIG_FOR_DOC = 'Phi3Config'
|
| 69 |
+
|
| 70 |
+
PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 71 |
+
'microsoft/Phi-3-mini-4k-instruct',
|
| 72 |
+
'microsoft/Phi-3-mini-128k-instruct',
|
| 73 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
| 78 |
+
class Phi3RMSNorm(nn.Module):
|
| 79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 80 |
+
"""
|
| 81 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
| 82 |
+
"""
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 85 |
+
self.variance_epsilon = eps
|
| 86 |
+
|
| 87 |
+
def forward(self, hidden_states):
|
| 88 |
+
input_dtype = hidden_states.dtype
|
| 89 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 92 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 96 |
+
def _get_unpad_data(attention_mask):
|
| 97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 101 |
+
return (
|
| 102 |
+
indices,
|
| 103 |
+
cu_seqlens,
|
| 104 |
+
max_seqlen_in_batch,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
| 109 |
+
class Phi3RotaryEmbedding(nn.Module):
|
| 110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 111 |
+
super().__init__()
|
| 112 |
+
|
| 113 |
+
self.dim = dim
|
| 114 |
+
self.max_position_embeddings = max_position_embeddings
|
| 115 |
+
self.base = base
|
| 116 |
+
self.register_buffer('inv_freq', None, persistent=False)
|
| 117 |
+
|
| 118 |
+
@torch.no_grad()
|
| 119 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 121 |
+
if self.inv_freq is None:
|
| 122 |
+
self.inv_freq = 1.0 / (
|
| 123 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
| 124 |
+
)
|
| 125 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 126 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 127 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 128 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 129 |
+
device_type = x.device.type
|
| 130 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
| 131 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 132 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 133 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 134 |
+
cos = emb.cos()
|
| 135 |
+
sin = emb.sin()
|
| 136 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
| 140 |
+
def __init__(self, dim, config, device=None):
|
| 141 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
| 142 |
+
|
| 143 |
+
self.short_factor = config.rope_scaling['short_factor']
|
| 144 |
+
self.long_factor = config.rope_scaling['long_factor']
|
| 145 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 146 |
+
|
| 147 |
+
@torch.no_grad()
|
| 148 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 149 |
+
seq_len = torch.max(position_ids) + 1
|
| 150 |
+
if seq_len > self.original_max_position_embeddings:
|
| 151 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
| 152 |
+
else:
|
| 153 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
| 154 |
+
|
| 155 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
| 156 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
| 157 |
+
|
| 158 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 159 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 160 |
+
|
| 161 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 162 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 163 |
+
device_type = x.device.type
|
| 164 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
| 165 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 166 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 167 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 168 |
+
|
| 169 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
| 170 |
+
if scale <= 1.0:
|
| 171 |
+
scaling_factor = 1.0
|
| 172 |
+
else:
|
| 173 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
| 174 |
+
|
| 175 |
+
cos = emb.cos() * scaling_factor
|
| 176 |
+
sin = emb.sin() * scaling_factor
|
| 177 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
| 181 |
+
def __init__(self, dim, config, device=None):
|
| 182 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
| 183 |
+
|
| 184 |
+
self.short_factor = config.rope_scaling['short_factor']
|
| 185 |
+
self.long_factor = config.rope_scaling['long_factor']
|
| 186 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 187 |
+
|
| 188 |
+
@torch.no_grad()
|
| 189 |
+
def forward(self, x, position_ids, seq_len=None):
|
| 190 |
+
seq_len = torch.max(position_ids) + 1
|
| 191 |
+
if seq_len > self.original_max_position_embeddings:
|
| 192 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
| 193 |
+
else:
|
| 194 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
| 195 |
+
|
| 196 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
| 197 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
| 198 |
+
|
| 199 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 200 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 201 |
+
|
| 202 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 203 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 204 |
+
device_type = x.device.type
|
| 205 |
+
device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
|
| 206 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 207 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 209 |
+
|
| 210 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
| 211 |
+
if scale <= 1.0:
|
| 212 |
+
scaling_factor = 1.0
|
| 213 |
+
else:
|
| 214 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
| 215 |
+
|
| 216 |
+
cos = emb.cos() * scaling_factor
|
| 217 |
+
sin = emb.sin() * scaling_factor
|
| 218 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 222 |
+
def rotate_half(x):
|
| 223 |
+
"""Rotates half the hidden dims of the input."""
|
| 224 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 225 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 226 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 230 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 231 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
q (`torch.Tensor`): The query tensor.
|
| 235 |
+
k (`torch.Tensor`): The key tensor.
|
| 236 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 237 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 238 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 239 |
+
Deprecated and unused.
|
| 240 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 241 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 242 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 243 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 244 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 245 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 246 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 247 |
+
Returns:
|
| 248 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 249 |
+
"""
|
| 250 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 251 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 252 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 253 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 254 |
+
return q_embed, k_embed
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class Phi3MLP(nn.Module):
|
| 258 |
+
def __init__(self, config):
|
| 259 |
+
super().__init__()
|
| 260 |
+
|
| 261 |
+
self.config = config
|
| 262 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
| 263 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 264 |
+
|
| 265 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 266 |
+
|
| 267 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 268 |
+
up_states = self.gate_up_proj(hidden_states)
|
| 269 |
+
|
| 270 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
| 271 |
+
up_states = up_states * self.activation_fn(gate)
|
| 272 |
+
|
| 273 |
+
return self.down_proj(up_states)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
| 277 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 278 |
+
"""
|
| 279 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 280 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 281 |
+
"""
|
| 282 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 283 |
+
if n_rep == 1:
|
| 284 |
+
return hidden_states
|
| 285 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 286 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class Phi3Attention(nn.Module):
|
| 290 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 291 |
+
|
| 292 |
+
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.config = config
|
| 295 |
+
self.layer_idx = layer_idx
|
| 296 |
+
if layer_idx is None:
|
| 297 |
+
logger.warning_once(
|
| 298 |
+
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
|
| 299 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
|
| 300 |
+
'when creating this class.'
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
self.attention_dropout = config.attention_dropout
|
| 304 |
+
self.hidden_size = config.hidden_size
|
| 305 |
+
self.num_heads = config.num_attention_heads
|
| 306 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 307 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 309 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 310 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
| 311 |
+
self.rope_theta = config.rope_theta
|
| 312 |
+
self.rope_scaling = config.rope_scaling
|
| 313 |
+
self.is_causal = True
|
| 314 |
+
|
| 315 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 316 |
+
raise ValueError(
|
| 317 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
| 318 |
+
f' and `num_heads`: {self.num_heads}).'
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
| 322 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 323 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
| 324 |
+
self._init_rope()
|
| 325 |
+
|
| 326 |
+
def _init_rope(self):
|
| 327 |
+
if self.rope_scaling is None:
|
| 328 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
| 329 |
+
self.head_dim,
|
| 330 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 331 |
+
base=self.rope_theta,
|
| 332 |
+
)
|
| 333 |
+
else:
|
| 334 |
+
scaling_type = self.config.rope_scaling['type']
|
| 335 |
+
if scaling_type == 'su':
|
| 336 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
| 337 |
+
elif scaling_type == 'yarn':
|
| 338 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
| 339 |
+
else:
|
| 340 |
+
raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
|
| 341 |
+
|
| 342 |
+
def forward(
|
| 343 |
+
self,
|
| 344 |
+
hidden_states: torch.Tensor,
|
| 345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 347 |
+
past_key_value: Optional[Cache] = None,
|
| 348 |
+
output_attentions: bool = False,
|
| 349 |
+
use_cache: bool = False,
|
| 350 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 351 |
+
logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
|
| 352 |
+
|
| 353 |
+
bsz, q_len, _ = hidden_states.size()
|
| 354 |
+
|
| 355 |
+
qkv = self.qkv_proj(hidden_states)
|
| 356 |
+
query_pos = self.num_heads * self.head_dim
|
| 357 |
+
query_states = qkv[..., :query_pos]
|
| 358 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 359 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 360 |
+
|
| 361 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 362 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 363 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 364 |
+
|
| 365 |
+
kv_seq_len = key_states.shape[-2]
|
| 366 |
+
if past_key_value is not None:
|
| 367 |
+
if self.layer_idx is None:
|
| 368 |
+
raise ValueError(
|
| 369 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
| 370 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
| 371 |
+
'with a layer index.'
|
| 372 |
+
)
|
| 373 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 374 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
| 375 |
+
|
| 376 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 377 |
+
|
| 378 |
+
if past_key_value is not None:
|
| 379 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
| 380 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 381 |
+
|
| 382 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 383 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 384 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 385 |
+
|
| 386 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 387 |
+
|
| 388 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 389 |
+
raise ValueError(
|
| 390 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
| 391 |
+
f' {attn_weights.size()}'
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
if attention_mask is not None:
|
| 395 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 398 |
+
)
|
| 399 |
+
attn_weights = attn_weights + attention_mask
|
| 400 |
+
|
| 401 |
+
# upcast attention to fp32
|
| 402 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
| 403 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 404 |
+
|
| 405 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 406 |
+
|
| 407 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 408 |
+
raise ValueError(
|
| 409 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
| 410 |
+
f' {attn_output.size()}'
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 414 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 415 |
+
|
| 416 |
+
attn_output = self.o_proj(attn_output)
|
| 417 |
+
|
| 418 |
+
if not output_attentions:
|
| 419 |
+
attn_weights = None
|
| 420 |
+
|
| 421 |
+
return attn_output, attn_weights, past_key_value
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
class Phi3FlashAttention2(Phi3Attention):
|
| 425 |
+
"""
|
| 426 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
| 427 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 428 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 429 |
+
"""
|
| 430 |
+
|
| 431 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 432 |
+
def __init__(self, *args, **kwargs):
|
| 433 |
+
super().__init__(*args, **kwargs)
|
| 434 |
+
|
| 435 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 436 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 437 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 438 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 439 |
+
|
| 440 |
+
def forward(
|
| 441 |
+
self,
|
| 442 |
+
hidden_states: torch.Tensor,
|
| 443 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 444 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 445 |
+
past_key_value: Optional[Cache] = None,
|
| 446 |
+
output_attentions: bool = False,
|
| 447 |
+
use_cache: bool = False,
|
| 448 |
+
**kwargs,
|
| 449 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 450 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
| 451 |
+
|
| 452 |
+
if not _flash_supports_window_size:
|
| 453 |
+
logger.warning_once(
|
| 454 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
| 455 |
+
)
|
| 456 |
+
raise ValueError('The current flash attention version does not support sliding window attention.')
|
| 457 |
+
|
| 458 |
+
output_attentions = False
|
| 459 |
+
|
| 460 |
+
if 'padding_mask' in kwargs:
|
| 461 |
+
warnings.warn(
|
| 462 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
# overwrite attention_mask with padding_mask
|
| 466 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 467 |
+
|
| 468 |
+
bsz, q_len, _ = hidden_states.size()
|
| 469 |
+
|
| 470 |
+
qkv = self.qkv_proj(hidden_states)
|
| 471 |
+
query_pos = self.num_heads * self.head_dim
|
| 472 |
+
query_states = qkv[..., :query_pos]
|
| 473 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 474 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 475 |
+
|
| 476 |
+
# Flash attention requires the input to have the shape
|
| 477 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 478 |
+
# therefore we just need to keep the original shape
|
| 479 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 480 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 481 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 482 |
+
|
| 483 |
+
kv_seq_len = key_states.shape[-2]
|
| 484 |
+
if past_key_value is not None:
|
| 485 |
+
if self.layer_idx is None:
|
| 486 |
+
raise ValueError(
|
| 487 |
+
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
|
| 488 |
+
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
|
| 489 |
+
'with a layer index.'
|
| 490 |
+
)
|
| 491 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 492 |
+
|
| 493 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 494 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
| 495 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
| 496 |
+
|
| 497 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 498 |
+
|
| 499 |
+
use_sliding_windows = (
|
| 500 |
+
_flash_supports_window_size
|
| 501 |
+
and getattr(self.config, 'sliding_window', None) is not None
|
| 502 |
+
and kv_seq_len > self.config.sliding_window
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
if past_key_value is not None:
|
| 506 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
| 507 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
| 508 |
+
if (
|
| 509 |
+
getattr(self.config, 'sliding_window', None) is not None
|
| 510 |
+
and kv_seq_len > self.config.sliding_window
|
| 511 |
+
and cache_has_contents
|
| 512 |
+
):
|
| 513 |
+
slicing_tokens = 1 - self.config.sliding_window
|
| 514 |
+
|
| 515 |
+
past_key = past_key_value[self.layer_idx][0]
|
| 516 |
+
past_value = past_key_value[self.layer_idx][1]
|
| 517 |
+
|
| 518 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
| 519 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
| 520 |
+
|
| 521 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
| 522 |
+
raise ValueError(
|
| 523 |
+
f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
|
| 524 |
+
f' {past_key.shape}'
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
if attention_mask is not None:
|
| 528 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
| 529 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
| 530 |
+
|
| 531 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
| 532 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 533 |
+
|
| 534 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 535 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 536 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 537 |
+
|
| 538 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
| 539 |
+
|
| 540 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 541 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 542 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 543 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 544 |
+
# in fp32.
|
| 545 |
+
|
| 546 |
+
if query_states.dtype == torch.float32:
|
| 547 |
+
if torch.is_autocast_enabled():
|
| 548 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 549 |
+
# Handle the case where the model is quantized
|
| 550 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
| 551 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 552 |
+
else:
|
| 553 |
+
target_dtype = self.qkv_proj.weight.dtype
|
| 554 |
+
|
| 555 |
+
logger.warning_once(
|
| 556 |
+
f'The input hidden states seems to be silently casted in float32, this might be related to'
|
| 557 |
+
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
|
| 558 |
+
f' {target_dtype}.'
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
query_states = query_states.to(target_dtype)
|
| 562 |
+
key_states = key_states.to(target_dtype)
|
| 563 |
+
value_states = value_states.to(target_dtype)
|
| 564 |
+
|
| 565 |
+
# Reashape to the expected shape for Flash Attention
|
| 566 |
+
query_states = query_states.transpose(1, 2)
|
| 567 |
+
key_states = key_states.transpose(1, 2)
|
| 568 |
+
value_states = value_states.transpose(1, 2)
|
| 569 |
+
|
| 570 |
+
attn_output = self._flash_attention_forward(
|
| 571 |
+
query_states,
|
| 572 |
+
key_states,
|
| 573 |
+
value_states,
|
| 574 |
+
attention_mask,
|
| 575 |
+
q_len,
|
| 576 |
+
dropout=attn_dropout,
|
| 577 |
+
use_sliding_windows=use_sliding_windows,
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 581 |
+
attn_output = self.o_proj(attn_output)
|
| 582 |
+
|
| 583 |
+
if not output_attentions:
|
| 584 |
+
attn_weights = None
|
| 585 |
+
|
| 586 |
+
return attn_output, attn_weights, past_key_value
|
| 587 |
+
|
| 588 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
| 589 |
+
def _flash_attention_forward(
|
| 590 |
+
self,
|
| 591 |
+
query_states,
|
| 592 |
+
key_states,
|
| 593 |
+
value_states,
|
| 594 |
+
attention_mask,
|
| 595 |
+
query_length,
|
| 596 |
+
dropout=0.0,
|
| 597 |
+
softmax_scale=None,
|
| 598 |
+
use_sliding_windows=False,
|
| 599 |
+
):
|
| 600 |
+
"""
|
| 601 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 602 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 603 |
+
|
| 604 |
+
Args:
|
| 605 |
+
query_states (`torch.Tensor`):
|
| 606 |
+
Input query states to be passed to Flash Attention API
|
| 607 |
+
key_states (`torch.Tensor`):
|
| 608 |
+
Input key states to be passed to Flash Attention API
|
| 609 |
+
value_states (`torch.Tensor`):
|
| 610 |
+
Input value states to be passed to Flash Attention API
|
| 611 |
+
attention_mask (`torch.Tensor`):
|
| 612 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 613 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 614 |
+
dropout (`float`):
|
| 615 |
+
Attention dropout
|
| 616 |
+
softmax_scale (`float`, *optional*):
|
| 617 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 618 |
+
use_sliding_windows (`bool`, *optional*):
|
| 619 |
+
Whether to activate sliding window attention.
|
| 620 |
+
"""
|
| 621 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 622 |
+
causal = self.is_causal
|
| 623 |
+
else:
|
| 624 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 625 |
+
causal = self.is_causal and query_length != 1
|
| 626 |
+
|
| 627 |
+
# Contains at least one padding token in the sequence
|
| 628 |
+
if attention_mask is not None:
|
| 629 |
+
batch_size = query_states.shape[0]
|
| 630 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 631 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 635 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 636 |
+
|
| 637 |
+
if not use_sliding_windows:
|
| 638 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 639 |
+
query_states,
|
| 640 |
+
key_states,
|
| 641 |
+
value_states,
|
| 642 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 643 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 644 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 645 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 646 |
+
dropout_p=dropout,
|
| 647 |
+
softmax_scale=softmax_scale,
|
| 648 |
+
causal=causal,
|
| 649 |
+
)
|
| 650 |
+
else:
|
| 651 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 652 |
+
query_states,
|
| 653 |
+
key_states,
|
| 654 |
+
value_states,
|
| 655 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 656 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 657 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 658 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 659 |
+
dropout_p=dropout,
|
| 660 |
+
softmax_scale=softmax_scale,
|
| 661 |
+
causal=causal,
|
| 662 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 666 |
+
else:
|
| 667 |
+
if not use_sliding_windows:
|
| 668 |
+
attn_output = flash_attn_func(
|
| 669 |
+
query_states,
|
| 670 |
+
key_states,
|
| 671 |
+
value_states,
|
| 672 |
+
dropout,
|
| 673 |
+
softmax_scale=softmax_scale,
|
| 674 |
+
causal=causal,
|
| 675 |
+
)
|
| 676 |
+
else:
|
| 677 |
+
attn_output = flash_attn_func(
|
| 678 |
+
query_states,
|
| 679 |
+
key_states,
|
| 680 |
+
value_states,
|
| 681 |
+
dropout,
|
| 682 |
+
softmax_scale=softmax_scale,
|
| 683 |
+
causal=causal,
|
| 684 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
return attn_output
|
| 688 |
+
|
| 689 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
| 690 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 691 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
| 692 |
+
|
| 693 |
+
# On the first iteration we need to properly re-create the padding mask
|
| 694 |
+
# by slicing it on the proper place
|
| 695 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
| 696 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
| 697 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
| 698 |
+
|
| 699 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 700 |
+
|
| 701 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 702 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 703 |
+
|
| 704 |
+
if query_length == kv_seq_len:
|
| 705 |
+
query_layer = index_first_axis(
|
| 706 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
| 707 |
+
)
|
| 708 |
+
cu_seqlens_q = cu_seqlens_k
|
| 709 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 710 |
+
indices_q = indices_k
|
| 711 |
+
elif query_length == 1:
|
| 712 |
+
max_seqlen_in_batch_q = 1
|
| 713 |
+
cu_seqlens_q = torch.arange(
|
| 714 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 715 |
+
) # There is a memcpy here, that is very bad.
|
| 716 |
+
indices_q = cu_seqlens_q[:-1]
|
| 717 |
+
query_layer = query_layer.squeeze(1)
|
| 718 |
+
else:
|
| 719 |
+
# The -q_len: slice assumes left padding.
|
| 720 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 721 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 722 |
+
|
| 723 |
+
return (
|
| 724 |
+
query_layer,
|
| 725 |
+
key_layer,
|
| 726 |
+
value_layer,
|
| 727 |
+
indices_q,
|
| 728 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 729 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
| 734 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
| 735 |
+
class Phi3SdpaAttention(Phi3Attention):
|
| 736 |
+
"""
|
| 737 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 738 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 739 |
+
SDPA API.
|
| 740 |
+
"""
|
| 741 |
+
|
| 742 |
+
# Adapted from Phi3Attention.forward
|
| 743 |
+
def forward(
|
| 744 |
+
self,
|
| 745 |
+
hidden_states: torch.Tensor,
|
| 746 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 747 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 748 |
+
past_key_value: Optional[Cache] = None,
|
| 749 |
+
output_attentions: bool = False,
|
| 750 |
+
use_cache: bool = False,
|
| 751 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 752 |
+
if output_attentions:
|
| 753 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 754 |
+
logger.warning_once(
|
| 755 |
+
'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
|
| 756 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 757 |
+
)
|
| 758 |
+
return super().forward(
|
| 759 |
+
hidden_states=hidden_states,
|
| 760 |
+
attention_mask=attention_mask,
|
| 761 |
+
position_ids=position_ids,
|
| 762 |
+
past_key_value=past_key_value,
|
| 763 |
+
output_attentions=output_attentions,
|
| 764 |
+
use_cache=use_cache,
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
bsz, q_len, _ = hidden_states.size()
|
| 768 |
+
|
| 769 |
+
qkv = self.qkv_proj(hidden_states)
|
| 770 |
+
query_pos = self.num_heads * self.head_dim
|
| 771 |
+
query_states = qkv[..., :query_pos]
|
| 772 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 773 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 774 |
+
|
| 775 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 776 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 777 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 778 |
+
|
| 779 |
+
kv_seq_len = key_states.shape[-2]
|
| 780 |
+
if past_key_value is not None:
|
| 781 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 782 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
| 783 |
+
|
| 784 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 785 |
+
|
| 786 |
+
if past_key_value is not None:
|
| 787 |
+
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
|
| 788 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 789 |
+
|
| 790 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 791 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 792 |
+
|
| 793 |
+
if attention_mask is not None:
|
| 794 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 795 |
+
raise ValueError(
|
| 796 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 800 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 801 |
+
if query_states.device.type == 'cuda' and attention_mask is not None:
|
| 802 |
+
query_states = query_states.contiguous()
|
| 803 |
+
key_states = key_states.contiguous()
|
| 804 |
+
value_states = value_states.contiguous()
|
| 805 |
+
|
| 806 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 807 |
+
query_states,
|
| 808 |
+
key_states,
|
| 809 |
+
value_states,
|
| 810 |
+
attn_mask=attention_mask,
|
| 811 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 812 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 813 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
| 814 |
+
)
|
| 815 |
+
|
| 816 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 817 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 818 |
+
|
| 819 |
+
attn_output = self.o_proj(attn_output)
|
| 820 |
+
|
| 821 |
+
return attn_output, None, past_key_value
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
PHI3_ATTENTION_CLASSES = {
|
| 825 |
+
'eager': Phi3Attention,
|
| 826 |
+
'flash_attention_2': Phi3FlashAttention2,
|
| 827 |
+
'sdpa': Phi3SdpaAttention,
|
| 828 |
+
}
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
class Phi3DecoderLayer(nn.Module):
|
| 832 |
+
def __init__(self, config: Phi3Config, layer_idx: int):
|
| 833 |
+
super().__init__()
|
| 834 |
+
|
| 835 |
+
self.config = config
|
| 836 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
| 837 |
+
|
| 838 |
+
self.mlp = Phi3MLP(config)
|
| 839 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 840 |
+
|
| 841 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
| 842 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
| 843 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 844 |
+
|
| 845 |
+
def forward(
|
| 846 |
+
self,
|
| 847 |
+
hidden_states: torch.Tensor,
|
| 848 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 849 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 850 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 851 |
+
output_attentions: Optional[bool] = False,
|
| 852 |
+
use_cache: Optional[bool] = False,
|
| 853 |
+
**kwargs,
|
| 854 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 855 |
+
if 'padding_mask' in kwargs:
|
| 856 |
+
warnings.warn(
|
| 857 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
| 858 |
+
)
|
| 859 |
+
"""
|
| 860 |
+
Args:
|
| 861 |
+
hidden_states (`torch.FloatTensor`):
|
| 862 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 863 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 864 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 865 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 866 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
| 867 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 868 |
+
output_attentions (`bool`, *optional*):
|
| 869 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 870 |
+
returned tensors for more detail.
|
| 871 |
+
use_cache (`bool`, *optional*):
|
| 872 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 873 |
+
(see `past_key_values`).
|
| 874 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 875 |
+
"""
|
| 876 |
+
|
| 877 |
+
residual = hidden_states
|
| 878 |
+
|
| 879 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 880 |
+
|
| 881 |
+
# Self Attention
|
| 882 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
| 883 |
+
hidden_states=hidden_states,
|
| 884 |
+
attention_mask=attention_mask,
|
| 885 |
+
position_ids=position_ids,
|
| 886 |
+
past_key_value=past_key_value,
|
| 887 |
+
output_attentions=output_attentions,
|
| 888 |
+
use_cache=use_cache,
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
| 892 |
+
|
| 893 |
+
residual = hidden_states
|
| 894 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 895 |
+
hidden_states = self.mlp(hidden_states)
|
| 896 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
| 897 |
+
|
| 898 |
+
outputs = (hidden_states,)
|
| 899 |
+
|
| 900 |
+
if output_attentions:
|
| 901 |
+
outputs += (self_attn_weights,)
|
| 902 |
+
|
| 903 |
+
if use_cache:
|
| 904 |
+
outputs += (present_key_value,)
|
| 905 |
+
|
| 906 |
+
return outputs
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
PHI3_START_DOCSTRING = r"""
|
| 910 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 911 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 912 |
+
etc.)
|
| 913 |
+
|
| 914 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 915 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 916 |
+
and behavior.
|
| 917 |
+
|
| 918 |
+
Parameters:
|
| 919 |
+
config ([`Phi3Config`]):
|
| 920 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 921 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 922 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 923 |
+
"""
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
@add_start_docstrings(
|
| 927 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
| 928 |
+
PHI3_START_DOCSTRING,
|
| 929 |
+
)
|
| 930 |
+
class Phi3PreTrainedModel(PreTrainedModel):
|
| 931 |
+
config_class = Phi3Config
|
| 932 |
+
base_model_prefix = 'model'
|
| 933 |
+
supports_gradient_checkpointing = True
|
| 934 |
+
_no_split_modules = ['Phi3DecoderLayer']
|
| 935 |
+
_skip_keys_device_placement = 'past_key_values'
|
| 936 |
+
_supports_flash_attn_2 = True
|
| 937 |
+
_supports_sdpa = False
|
| 938 |
+
_supports_cache_class = True
|
| 939 |
+
|
| 940 |
+
_version = '0.0.5'
|
| 941 |
+
|
| 942 |
+
def __init__(self, config: Phi3Config):
|
| 943 |
+
if not has_flash_attn:
|
| 944 |
+
config._attn_implementation = 'eager'
|
| 945 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
| 946 |
+
super().__init__(config)
|
| 947 |
+
|
| 948 |
+
def _init_weights(self, module):
|
| 949 |
+
std = self.config.initializer_range
|
| 950 |
+
if isinstance(module, nn.Linear):
|
| 951 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 952 |
+
if module.bias is not None:
|
| 953 |
+
module.bias.data.zero_()
|
| 954 |
+
elif isinstance(module, nn.Embedding):
|
| 955 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 956 |
+
if module.padding_idx is not None:
|
| 957 |
+
module.weight.data[module.padding_idx].zero_()
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
PHI3_INPUTS_DOCSTRING = r"""
|
| 961 |
+
Args:
|
| 962 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 963 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 964 |
+
it.
|
| 965 |
+
|
| 966 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 967 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 968 |
+
|
| 969 |
+
[What are input IDs?](../glossary#input-ids)
|
| 970 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 971 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 972 |
+
|
| 973 |
+
- 1 for tokens that are **not masked**,
|
| 974 |
+
- 0 for tokens that are **masked**.
|
| 975 |
+
|
| 976 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 977 |
+
|
| 978 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 979 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 980 |
+
|
| 981 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 982 |
+
`past_key_values`).
|
| 983 |
+
|
| 984 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 985 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 986 |
+
information on the default strategy.
|
| 987 |
+
|
| 988 |
+
- 1 indicates the head is **not masked**,
|
| 989 |
+
- 0 indicates the head is **masked**.
|
| 990 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 991 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 992 |
+
config.n_positions - 1]`.
|
| 993 |
+
|
| 994 |
+
[What are position IDs?](../glossary#position-ids)
|
| 995 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 996 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 997 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 998 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 999 |
+
|
| 1000 |
+
Two formats are allowed:
|
| 1001 |
+
- a [`~cache_utils.Cache`] instance;
|
| 1002 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1003 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1004 |
+
cache format.
|
| 1005 |
+
|
| 1006 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1007 |
+
legacy cache format will be returned.
|
| 1008 |
+
|
| 1009 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1010 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1011 |
+
of shape `(batch_size, sequence_length)`.
|
| 1012 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1013 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1014 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1015 |
+
model's internal embedding lookup matrix.
|
| 1016 |
+
use_cache (`bool`, *optional*):
|
| 1017 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1018 |
+
`past_key_values`).
|
| 1019 |
+
output_attentions (`bool`, *optional*):
|
| 1020 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1021 |
+
tensors for more detail.
|
| 1022 |
+
output_hidden_states (`bool`, *optional*):
|
| 1023 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1024 |
+
more detail.
|
| 1025 |
+
return_dict (`bool`, *optional*):
|
| 1026 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1027 |
+
"""
|
| 1028 |
+
|
| 1029 |
+
|
| 1030 |
+
@add_start_docstrings(
|
| 1031 |
+
'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
|
| 1032 |
+
PHI3_START_DOCSTRING,
|
| 1033 |
+
)
|
| 1034 |
+
class Phi3Model(Phi3PreTrainedModel):
|
| 1035 |
+
"""
|
| 1036 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
| 1037 |
+
|
| 1038 |
+
Args:
|
| 1039 |
+
config: Phi3Config
|
| 1040 |
+
"""
|
| 1041 |
+
|
| 1042 |
+
def __init__(self, config: Phi3Config):
|
| 1043 |
+
super().__init__(config)
|
| 1044 |
+
self.padding_idx = config.pad_token_id
|
| 1045 |
+
self.vocab_size = config.vocab_size
|
| 1046 |
+
|
| 1047 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1048 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
| 1049 |
+
self.layers = nn.ModuleList(
|
| 1050 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1051 |
+
)
|
| 1052 |
+
self._attn_implementation = config._attn_implementation
|
| 1053 |
+
|
| 1054 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1055 |
+
|
| 1056 |
+
self.gradient_checkpointing = False
|
| 1057 |
+
# Initialize weights and apply final processing
|
| 1058 |
+
self.post_init()
|
| 1059 |
+
|
| 1060 |
+
def get_input_embeddings(self):
|
| 1061 |
+
return self.embed_tokens
|
| 1062 |
+
|
| 1063 |
+
def set_input_embeddings(self, value):
|
| 1064 |
+
self.embed_tokens = value
|
| 1065 |
+
|
| 1066 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
| 1067 |
+
def forward(
|
| 1068 |
+
self,
|
| 1069 |
+
input_ids: torch.LongTensor = None,
|
| 1070 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1071 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1072 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1073 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1074 |
+
use_cache: Optional[bool] = None,
|
| 1075 |
+
output_attentions: Optional[bool] = None,
|
| 1076 |
+
output_hidden_states: Optional[bool] = None,
|
| 1077 |
+
return_dict: Optional[bool] = None,
|
| 1078 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1079 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1080 |
+
output_hidden_states = (
|
| 1081 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1082 |
+
)
|
| 1083 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1084 |
+
|
| 1085 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1086 |
+
|
| 1087 |
+
# retrieve input_ids and inputs_embeds
|
| 1088 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1089 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
| 1090 |
+
elif input_ids is not None:
|
| 1091 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 1092 |
+
elif inputs_embeds is not None:
|
| 1093 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 1094 |
+
else:
|
| 1095 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
| 1096 |
+
|
| 1097 |
+
past_key_values_length = 0
|
| 1098 |
+
|
| 1099 |
+
if self.gradient_checkpointing and self.training:
|
| 1100 |
+
if use_cache:
|
| 1101 |
+
logger.warning_once(
|
| 1102 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
| 1103 |
+
)
|
| 1104 |
+
use_cache = False
|
| 1105 |
+
|
| 1106 |
+
if use_cache:
|
| 1107 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 1108 |
+
if use_legacy_cache:
|
| 1109 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 1110 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 1111 |
+
|
| 1112 |
+
if position_ids is None:
|
| 1113 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1114 |
+
position_ids = torch.arange(
|
| 1115 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 1116 |
+
)
|
| 1117 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
| 1118 |
+
else:
|
| 1119 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
| 1120 |
+
|
| 1121 |
+
if inputs_embeds is None:
|
| 1122 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1123 |
+
|
| 1124 |
+
if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
|
| 1125 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 1126 |
+
if is_padding_right:
|
| 1127 |
+
raise ValueError(
|
| 1128 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 1129 |
+
' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
|
| 1130 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1131 |
+
)
|
| 1132 |
+
|
| 1133 |
+
if self._attn_implementation == 'flash_attention_2':
|
| 1134 |
+
# 2d mask is passed through the layers
|
| 1135 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 1136 |
+
else:
|
| 1137 |
+
# 4d mask is passed through the layers
|
| 1138 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
| 1139 |
+
attention_mask,
|
| 1140 |
+
(batch_size, seq_length),
|
| 1141 |
+
inputs_embeds,
|
| 1142 |
+
past_key_values_length,
|
| 1143 |
+
sliding_window=self.config.sliding_window,
|
| 1144 |
+
)
|
| 1145 |
+
|
| 1146 |
+
hidden_states = inputs_embeds
|
| 1147 |
+
|
| 1148 |
+
# decoder layers
|
| 1149 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1150 |
+
all_self_attns = () if output_attentions else None
|
| 1151 |
+
next_decoder_cache = None
|
| 1152 |
+
|
| 1153 |
+
for decoder_layer in self.layers:
|
| 1154 |
+
if output_hidden_states:
|
| 1155 |
+
all_hidden_states += (hidden_states,)
|
| 1156 |
+
|
| 1157 |
+
if self.gradient_checkpointing and self.training:
|
| 1158 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1159 |
+
decoder_layer.__call__,
|
| 1160 |
+
hidden_states,
|
| 1161 |
+
attention_mask,
|
| 1162 |
+
position_ids,
|
| 1163 |
+
past_key_values,
|
| 1164 |
+
output_attentions,
|
| 1165 |
+
use_cache,
|
| 1166 |
+
)
|
| 1167 |
+
else:
|
| 1168 |
+
layer_outputs = decoder_layer(
|
| 1169 |
+
hidden_states,
|
| 1170 |
+
attention_mask=attention_mask,
|
| 1171 |
+
position_ids=position_ids,
|
| 1172 |
+
past_key_value=past_key_values,
|
| 1173 |
+
output_attentions=output_attentions,
|
| 1174 |
+
use_cache=use_cache,
|
| 1175 |
+
)
|
| 1176 |
+
|
| 1177 |
+
hidden_states = layer_outputs[0]
|
| 1178 |
+
|
| 1179 |
+
if use_cache:
|
| 1180 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1181 |
+
|
| 1182 |
+
if output_attentions:
|
| 1183 |
+
all_self_attns += (layer_outputs[1],)
|
| 1184 |
+
|
| 1185 |
+
hidden_states = self.norm(hidden_states)
|
| 1186 |
+
|
| 1187 |
+
# add hidden states from the last decoder layer
|
| 1188 |
+
if output_hidden_states:
|
| 1189 |
+
all_hidden_states += (hidden_states,)
|
| 1190 |
+
|
| 1191 |
+
next_cache = None
|
| 1192 |
+
if use_cache:
|
| 1193 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 1194 |
+
if not return_dict:
|
| 1195 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1196 |
+
return BaseModelOutputWithPast(
|
| 1197 |
+
last_hidden_state=hidden_states,
|
| 1198 |
+
past_key_values=next_cache,
|
| 1199 |
+
hidden_states=all_hidden_states,
|
| 1200 |
+
attentions=all_self_attns,
|
| 1201 |
+
)
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
class Phi3ForCausalLM(Phi3PreTrainedModel):
|
| 1205 |
+
_tied_weights_keys = ['lm_head.weight']
|
| 1206 |
+
|
| 1207 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
| 1208 |
+
def __init__(self, config):
|
| 1209 |
+
super().__init__(config)
|
| 1210 |
+
self.model = Phi3Model(config)
|
| 1211 |
+
self.vocab_size = config.vocab_size
|
| 1212 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1213 |
+
|
| 1214 |
+
# Initialize weights and apply final processing
|
| 1215 |
+
self.post_init()
|
| 1216 |
+
|
| 1217 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
| 1218 |
+
def get_input_embeddings(self):
|
| 1219 |
+
return self.model.embed_tokens
|
| 1220 |
+
|
| 1221 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
| 1222 |
+
def set_input_embeddings(self, value):
|
| 1223 |
+
self.model.embed_tokens = value
|
| 1224 |
+
|
| 1225 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
| 1226 |
+
def get_output_embeddings(self):
|
| 1227 |
+
return self.lm_head
|
| 1228 |
+
|
| 1229 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
| 1230 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1231 |
+
self.lm_head = new_embeddings
|
| 1232 |
+
|
| 1233 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
| 1234 |
+
def set_decoder(self, decoder):
|
| 1235 |
+
self.model = decoder
|
| 1236 |
+
|
| 1237 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
| 1238 |
+
def get_decoder(self):
|
| 1239 |
+
return self.model
|
| 1240 |
+
|
| 1241 |
+
# Ignore copy
|
| 1242 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
| 1243 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1244 |
+
def forward(
|
| 1245 |
+
self,
|
| 1246 |
+
input_ids: torch.LongTensor = None,
|
| 1247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1248 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1249 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1250 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1251 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1252 |
+
use_cache: Optional[bool] = None,
|
| 1253 |
+
output_attentions: Optional[bool] = None,
|
| 1254 |
+
output_hidden_states: Optional[bool] = None,
|
| 1255 |
+
return_dict: Optional[bool] = None,
|
| 1256 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1257 |
+
r"""
|
| 1258 |
+
Args:
|
| 1259 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1260 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1261 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1262 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1263 |
+
|
| 1264 |
+
Returns:
|
| 1265 |
+
|
| 1266 |
+
Example:
|
| 1267 |
+
|
| 1268 |
+
```python
|
| 1269 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
| 1270 |
+
|
| 1271 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 1272 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 1273 |
+
|
| 1274 |
+
>>> prompt = "This is an example script ."
|
| 1275 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1276 |
+
|
| 1277 |
+
>>> # Generate
|
| 1278 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1279 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1280 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
| 1281 |
+
```"""
|
| 1282 |
+
|
| 1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1284 |
+
output_hidden_states = (
|
| 1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1286 |
+
)
|
| 1287 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1288 |
+
|
| 1289 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1290 |
+
outputs = self.model(
|
| 1291 |
+
input_ids=input_ids,
|
| 1292 |
+
attention_mask=attention_mask,
|
| 1293 |
+
position_ids=position_ids,
|
| 1294 |
+
past_key_values=past_key_values,
|
| 1295 |
+
inputs_embeds=inputs_embeds,
|
| 1296 |
+
use_cache=use_cache,
|
| 1297 |
+
output_attentions=output_attentions,
|
| 1298 |
+
output_hidden_states=output_hidden_states,
|
| 1299 |
+
return_dict=return_dict,
|
| 1300 |
+
)
|
| 1301 |
+
|
| 1302 |
+
hidden_states = outputs[0]
|
| 1303 |
+
logits = self.lm_head(hidden_states)
|
| 1304 |
+
logits = logits.float()
|
| 1305 |
+
|
| 1306 |
+
loss = None
|
| 1307 |
+
if labels is not None:
|
| 1308 |
+
# Shift so that tokens < n predict n
|
| 1309 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1310 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1311 |
+
# Flatten the tokens
|
| 1312 |
+
loss_fct = CrossEntropyLoss()
|
| 1313 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1314 |
+
shift_labels = shift_labels.view(-1)
|
| 1315 |
+
# Enable model parallelism
|
| 1316 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1317 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1318 |
+
|
| 1319 |
+
if not return_dict:
|
| 1320 |
+
output = (logits,) + outputs[1:]
|
| 1321 |
+
return (loss,) + output if loss is not None else output
|
| 1322 |
+
|
| 1323 |
+
return CausalLMOutputWithPast(
|
| 1324 |
+
loss=loss,
|
| 1325 |
+
logits=logits,
|
| 1326 |
+
past_key_values=outputs.past_key_values,
|
| 1327 |
+
hidden_states=outputs.hidden_states,
|
| 1328 |
+
attentions=outputs.attentions,
|
| 1329 |
+
)
|
| 1330 |
+
|
| 1331 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
| 1332 |
+
def prepare_inputs_for_generation(
|
| 1333 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 1334 |
+
):
|
| 1335 |
+
if past_key_values is not None:
|
| 1336 |
+
if isinstance(past_key_values, Cache):
|
| 1337 |
+
cache_length = past_key_values.get_seq_length()
|
| 1338 |
+
past_length = past_key_values.seen_tokens
|
| 1339 |
+
max_cache_length = past_key_values.get_max_length()
|
| 1340 |
+
else:
|
| 1341 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1342 |
+
max_cache_length = None
|
| 1343 |
+
|
| 1344 |
+
# Keep only the unprocessed tokens:
|
| 1345 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1346 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1347 |
+
# input)
|
| 1348 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1349 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1350 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1351 |
+
# input_ids based on the past_length.
|
| 1352 |
+
elif past_length < input_ids.shape[1]:
|
| 1353 |
+
input_ids = input_ids[:, past_length:]
|
| 1354 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1355 |
+
|
| 1356 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1357 |
+
if (
|
| 1358 |
+
max_cache_length is not None
|
| 1359 |
+
and attention_mask is not None
|
| 1360 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1361 |
+
):
|
| 1362 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1363 |
+
|
| 1364 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1365 |
+
if attention_mask is not None and position_ids is None:
|
| 1366 |
+
# create position_ids on the fly for batch generation
|
| 1367 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1368 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1369 |
+
if past_key_values:
|
| 1370 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1371 |
+
|
| 1372 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1373 |
+
if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
|
| 1374 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1375 |
+
else:
|
| 1376 |
+
model_inputs = {'input_ids': input_ids}
|
| 1377 |
+
|
| 1378 |
+
model_inputs.update(
|
| 1379 |
+
{
|
| 1380 |
+
'position_ids': position_ids,
|
| 1381 |
+
'past_key_values': past_key_values,
|
| 1382 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1383 |
+
'attention_mask': attention_mask,
|
| 1384 |
+
}
|
| 1385 |
+
)
|
| 1386 |
+
return model_inputs
|
| 1387 |
+
|
| 1388 |
+
@staticmethod
|
| 1389 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
| 1390 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1391 |
+
reordered_past = ()
|
| 1392 |
+
for layer_past in past_key_values:
|
| 1393 |
+
reordered_past += (
|
| 1394 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1395 |
+
)
|
| 1396 |
+
return reordered_past
|
| 1397 |
+
|
| 1398 |
+
|
| 1399 |
+
@add_start_docstrings(
|
| 1400 |
+
"""
|
| 1401 |
+
The [`Phi3Model`] with a sequence classification head on top (linear layer).
|
| 1402 |
+
|
| 1403 |
+
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1404 |
+
(e.g. GPT-2) do.
|
| 1405 |
+
|
| 1406 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1407 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1408 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1409 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1410 |
+
each row of the batch).
|
| 1411 |
+
""",
|
| 1412 |
+
PHI3_START_DOCSTRING,
|
| 1413 |
+
)
|
| 1414 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
| 1415 |
+
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
| 1416 |
+
def __init__(self, config):
|
| 1417 |
+
super().__init__(config)
|
| 1418 |
+
self.num_labels = config.num_labels
|
| 1419 |
+
self.model = Phi3Model(config)
|
| 1420 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1421 |
+
|
| 1422 |
+
# Initialize weights and apply final processing
|
| 1423 |
+
self.post_init()
|
| 1424 |
+
|
| 1425 |
+
def get_input_embeddings(self):
|
| 1426 |
+
return self.model.embed_tokens
|
| 1427 |
+
|
| 1428 |
+
def set_input_embeddings(self, value):
|
| 1429 |
+
self.model.embed_tokens = value
|
| 1430 |
+
|
| 1431 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
| 1432 |
+
def forward(
|
| 1433 |
+
self,
|
| 1434 |
+
input_ids: torch.LongTensor = None,
|
| 1435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1437 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1438 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1439 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1440 |
+
use_cache: Optional[bool] = None,
|
| 1441 |
+
output_attentions: Optional[bool] = None,
|
| 1442 |
+
output_hidden_states: Optional[bool] = None,
|
| 1443 |
+
return_dict: Optional[bool] = None,
|
| 1444 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1445 |
+
r"""
|
| 1446 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1447 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1448 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1449 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1450 |
+
"""
|
| 1451 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1452 |
+
|
| 1453 |
+
model_outputs = self.model(
|
| 1454 |
+
input_ids,
|
| 1455 |
+
attention_mask=attention_mask,
|
| 1456 |
+
position_ids=position_ids,
|
| 1457 |
+
past_key_values=past_key_values,
|
| 1458 |
+
inputs_embeds=inputs_embeds,
|
| 1459 |
+
use_cache=use_cache,
|
| 1460 |
+
output_attentions=output_attentions,
|
| 1461 |
+
output_hidden_states=output_hidden_states,
|
| 1462 |
+
return_dict=return_dict,
|
| 1463 |
+
)
|
| 1464 |
+
hidden_states = model_outputs[0]
|
| 1465 |
+
logits = self.score(hidden_states)
|
| 1466 |
+
|
| 1467 |
+
if input_ids is not None:
|
| 1468 |
+
batch_size = input_ids.shape[0]
|
| 1469 |
+
else:
|
| 1470 |
+
batch_size = inputs_embeds.shape[0]
|
| 1471 |
+
|
| 1472 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1473 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
| 1474 |
+
if self.config.pad_token_id is None:
|
| 1475 |
+
sequence_lengths = -1
|
| 1476 |
+
else:
|
| 1477 |
+
if input_ids is not None:
|
| 1478 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1479 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1480 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1481 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1482 |
+
else:
|
| 1483 |
+
sequence_lengths = -1
|
| 1484 |
+
|
| 1485 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1486 |
+
|
| 1487 |
+
loss = None
|
| 1488 |
+
if labels is not None:
|
| 1489 |
+
labels = labels.to(logits.device)
|
| 1490 |
+
if self.config.problem_type is None:
|
| 1491 |
+
if self.num_labels == 1:
|
| 1492 |
+
self.config.problem_type = 'regression'
|
| 1493 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1494 |
+
self.config.problem_type = 'single_label_classification'
|
| 1495 |
+
else:
|
| 1496 |
+
self.config.problem_type = 'multi_label_classification'
|
| 1497 |
+
|
| 1498 |
+
if self.config.problem_type == 'regression':
|
| 1499 |
+
loss_fct = MSELoss()
|
| 1500 |
+
if self.num_labels == 1:
|
| 1501 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1502 |
+
else:
|
| 1503 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1504 |
+
elif self.config.problem_type == 'single_label_classification':
|
| 1505 |
+
loss_fct = CrossEntropyLoss()
|
| 1506 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1507 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 1508 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1509 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1510 |
+
if not return_dict:
|
| 1511 |
+
output = (pooled_logits,) + model_outputs[1:]
|
| 1512 |
+
return ((loss,) + output) if loss is not None else output
|
| 1513 |
+
|
| 1514 |
+
return SequenceClassifierOutputWithPast(
|
| 1515 |
+
loss=loss,
|
| 1516 |
+
logits=pooled_logits,
|
| 1517 |
+
past_key_values=model_outputs.past_key_values,
|
| 1518 |
+
hidden_states=model_outputs.hidden_states,
|
| 1519 |
+
attentions=model_outputs.attentions,
|
| 1520 |
+
)
|
| 1521 |
+
|
| 1522 |
+
|
| 1523 |
+
@add_start_docstrings(
|
| 1524 |
+
"""
|
| 1525 |
+
[`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1526 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1527 |
+
""",
|
| 1528 |
+
PHI3_START_DOCSTRING,
|
| 1529 |
+
)
|
| 1530 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
| 1531 |
+
class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
| 1532 |
+
def __init__(self, config: Phi3Config):
|
| 1533 |
+
super().__init__(config)
|
| 1534 |
+
self.num_labels = config.num_labels
|
| 1535 |
+
|
| 1536 |
+
self.model = Phi3Model(config)
|
| 1537 |
+
if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
|
| 1538 |
+
classifier_dropout = config.classifier_dropout
|
| 1539 |
+
elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
|
| 1540 |
+
classifier_dropout = config.hidden_dropout
|
| 1541 |
+
else:
|
| 1542 |
+
classifier_dropout = 0.1
|
| 1543 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1544 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1545 |
+
|
| 1546 |
+
# Initialize weights and apply final processing
|
| 1547 |
+
self.post_init()
|
| 1548 |
+
|
| 1549 |
+
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
| 1550 |
+
@add_code_sample_docstrings(
|
| 1551 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1552 |
+
output_type=TokenClassifierOutput,
|
| 1553 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1554 |
+
)
|
| 1555 |
+
def forward(
|
| 1556 |
+
self,
|
| 1557 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1558 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 1559 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1560 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1561 |
+
labels: Optional[torch.Tensor] = None,
|
| 1562 |
+
use_cache: Optional[bool] = None,
|
| 1563 |
+
output_attentions: Optional[bool] = None,
|
| 1564 |
+
output_hidden_states: Optional[bool] = None,
|
| 1565 |
+
return_dict: Optional[bool] = None,
|
| 1566 |
+
**deprecated_arguments,
|
| 1567 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1568 |
+
r"""
|
| 1569 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1570 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1571 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1572 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1573 |
+
"""
|
| 1574 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1575 |
+
|
| 1576 |
+
model_outputs = self.model(
|
| 1577 |
+
input_ids,
|
| 1578 |
+
past_key_values=past_key_values,
|
| 1579 |
+
attention_mask=attention_mask,
|
| 1580 |
+
inputs_embeds=inputs_embeds,
|
| 1581 |
+
use_cache=use_cache,
|
| 1582 |
+
output_attentions=output_attentions,
|
| 1583 |
+
output_hidden_states=output_hidden_states,
|
| 1584 |
+
return_dict=return_dict,
|
| 1585 |
+
)
|
| 1586 |
+
|
| 1587 |
+
hidden_states = model_outputs[0]
|
| 1588 |
+
hidden_states = self.dropout(hidden_states)
|
| 1589 |
+
logits = self.classifier(hidden_states)
|
| 1590 |
+
|
| 1591 |
+
loss = None
|
| 1592 |
+
if labels is not None:
|
| 1593 |
+
# move labels to correct device to enable model parallelism
|
| 1594 |
+
labels = labels.to(logits.device)
|
| 1595 |
+
batch_size, seq_length = labels.shape
|
| 1596 |
+
loss_fct = CrossEntropyLoss()
|
| 1597 |
+
loss = loss_fct(
|
| 1598 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
if not return_dict:
|
| 1602 |
+
output = (logits,) + model_outputs[2:]
|
| 1603 |
+
return ((loss,) + output) if loss is not None else output
|
| 1604 |
+
|
| 1605 |
+
return TokenClassifierOutput(
|
| 1606 |
+
loss=loss,
|
| 1607 |
+
logits=logits,
|
| 1608 |
+
hidden_states=model_outputs.hidden_states,
|
| 1609 |
+
attentions=model_outputs.attentions,
|
| 1610 |
+
)
|
modeling_sa2va_chat.py
ADDED
|
@@ -0,0 +1,1100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# InternVL
|
| 3 |
+
# Copyright (c) 2024 OpenGVLab
|
| 4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 5 |
+
# --------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import Any, List, Optional, Tuple, Union, Dict, Set
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
import torchvision.transforms as T
|
| 13 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 14 |
+
|
| 15 |
+
import torch.utils.checkpoint
|
| 16 |
+
import transformers
|
| 17 |
+
|
| 18 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
| 19 |
+
from .modeling_phi3 import Phi3ForCausalLM
|
| 20 |
+
from peft import LoraConfig, get_peft_model
|
| 21 |
+
from torch import nn
|
| 22 |
+
from torch.nn import CrossEntropyLoss
|
| 23 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
| 24 |
+
LlamaTokenizer, Qwen2ForCausalLM)
|
| 25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 26 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 27 |
+
from transformers.utils import ModelOutput, logging, TensorType
|
| 28 |
+
from transformers import StoppingCriteriaList, StoppingCriteria
|
| 29 |
+
from transformers.models.mask2former.image_processing_mask2former import (
|
| 30 |
+
remove_low_and_no_objects, check_segment_validity)
|
| 31 |
+
|
| 32 |
+
from .configuration_sa2va_chat import Sa2VAChatConfig
|
| 33 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
| 34 |
+
|
| 35 |
+
from .templates import PROMPT_TEMPLATE
|
| 36 |
+
|
| 37 |
+
import numpy as np
|
| 38 |
+
from torchvision.transforms.functional import resize, to_pil_image
|
| 39 |
+
|
| 40 |
+
from types import MethodType
|
| 41 |
+
import torch.nn.functional as F
|
| 42 |
+
|
| 43 |
+
from transformers import Mask2FormerForUniversalSegmentation
|
| 44 |
+
|
| 45 |
+
from .mask2former import (
|
| 46 |
+
Mask2FormerMaskedAttentionDecoder_forward_first3layers,
|
| 47 |
+
Mask2FormerMaskedAttentionDecoder_forward_last3layers,
|
| 48 |
+
Mask2FormerTransformerModule_forward_first_part,
|
| 49 |
+
Mask2FormerTransformerModule_forward_second_part,
|
| 50 |
+
Mask2FormerModel_forward_first_part,
|
| 51 |
+
Mask2FormerModel_forward_second_part,
|
| 52 |
+
Mask2FormerForUniversalSegmentation_forward_first_part,
|
| 53 |
+
Mask2FormerForUniversalSegmentation_forward_second_part,
|
| 54 |
+
_post_init,
|
| 55 |
+
ov_class_predictor,
|
| 56 |
+
Mask2FormerLoss_loss_labels,
|
| 57 |
+
Mask2FormerLoss_loss_masks,
|
| 58 |
+
Mask2FormerLoss_sample_points_using_uncertainty,
|
| 59 |
+
Mask2FormerHungarianMatcher_forward,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
from .constants import (
|
| 63 |
+
IMG_CONTEXT_TOKEN, OBJ_CONTEXT_TOKEN, SEG_TOKEN, CLS_TOKEN, BG_CLS_TOKEN, OBJ_START_TOKEN, OBJ_END_TOKEN)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
from .flash_attention import FlashAttention
|
| 69 |
+
has_flash_attn = True
|
| 70 |
+
except:
|
| 71 |
+
print('FlashAttention is not installed.')
|
| 72 |
+
has_flash_attn = False
|
| 73 |
+
|
| 74 |
+
logger = logging.get_logger(__name__)
|
| 75 |
+
|
| 76 |
+
def version_cmp(v1, v2, op='eq'):
|
| 77 |
+
import operator
|
| 78 |
+
|
| 79 |
+
from packaging import version
|
| 80 |
+
op_func = getattr(operator, op)
|
| 81 |
+
return op_func(version.parse(v1), version.parse(v2))
|
| 82 |
+
|
| 83 |
+
class StopWordStoppingCriteria(StoppingCriteria):
|
| 84 |
+
"""StopWord stopping criteria."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, tokenizer, stop_word):
|
| 87 |
+
self.tokenizer = tokenizer
|
| 88 |
+
self.stop_word = stop_word
|
| 89 |
+
self.length = len(self.stop_word)
|
| 90 |
+
|
| 91 |
+
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
| 92 |
+
cur_text = self.tokenizer.decode(input_ids[0])
|
| 93 |
+
cur_text = cur_text.replace('\r', '').replace('\n', '')
|
| 94 |
+
return cur_text[-self.length:] == self.stop_word
|
| 95 |
+
|
| 96 |
+
def get_stop_criteria(
|
| 97 |
+
tokenizer,
|
| 98 |
+
stop_words=[],
|
| 99 |
+
):
|
| 100 |
+
stop_criteria = StoppingCriteriaList()
|
| 101 |
+
for word in stop_words:
|
| 102 |
+
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
| 103 |
+
return stop_criteria
|
| 104 |
+
|
| 105 |
+
class DirectResize:
|
| 106 |
+
def __init__(self, target_length: int) -> None:
|
| 107 |
+
self.target_length = target_length
|
| 108 |
+
|
| 109 |
+
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
| 110 |
+
"""
|
| 111 |
+
Expects a numpy array with shape HxWxC in uint8 format.
|
| 112 |
+
"""
|
| 113 |
+
img = to_pil_image(image, mode='RGB')
|
| 114 |
+
return np.array(img.resize((self.target_length, self.target_length)))
|
| 115 |
+
|
| 116 |
+
class Sa2VAChatModel(PreTrainedModel):
|
| 117 |
+
config_class = Sa2VAChatConfig
|
| 118 |
+
main_input_name = 'pixel_values'
|
| 119 |
+
base_model_prefix = 'language_model'
|
| 120 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
|
| 121 |
+
'Phi3DecoderLayer', 'Qwen2DecoderLayer', 'Mask2FormerForUniversalSegmentation']
|
| 122 |
+
_supports_flash_attn_2 = True
|
| 123 |
+
supports_gradient_checkpointing = True
|
| 124 |
+
|
| 125 |
+
def __init__(self, config: Sa2VAChatConfig, vision_model=None, language_model=None, mask2former=None, use_flash_attn=True):
|
| 126 |
+
super().__init__(config)
|
| 127 |
+
|
| 128 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
| 129 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
| 130 |
+
patch_size = config.vision_config.patch_size
|
| 131 |
+
self.patch_size = patch_size
|
| 132 |
+
self.select_layer = config.select_layer
|
| 133 |
+
self.template = config.template
|
| 134 |
+
self.template = self.template.replace('-', '_')
|
| 135 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
| 136 |
+
self.downsample_ratio = config.downsample_ratio
|
| 137 |
+
self.ps_version = config.ps_version
|
| 138 |
+
self.llm_arch_name = config.llm_config.architectures[0]
|
| 139 |
+
|
| 140 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
| 141 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
| 142 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
| 143 |
+
|
| 144 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
| 145 |
+
logger.info(f'ps_version: {self.ps_version}')
|
| 146 |
+
if vision_model is not None:
|
| 147 |
+
self.vision_model = vision_model
|
| 148 |
+
else:
|
| 149 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
| 150 |
+
if language_model is not None:
|
| 151 |
+
self.language_model = language_model
|
| 152 |
+
else:
|
| 153 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
| 154 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
| 155 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
| 156 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
| 157 |
+
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
| 158 |
+
self.language_model = Phi3ForCausalLM(config.llm_config)
|
| 159 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
| 160 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
| 161 |
+
else:
|
| 162 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
| 163 |
+
|
| 164 |
+
vit_hidden_size = config.vision_config.hidden_size
|
| 165 |
+
llm_hidden_size = config.llm_config.hidden_size
|
| 166 |
+
|
| 167 |
+
self.mlp1 = nn.Sequential(
|
| 168 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
| 169 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
| 170 |
+
nn.GELU(),
|
| 171 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
self.img_context_token_id = None
|
| 175 |
+
self.conv_template = PROMPT_TEMPLATE[self.template]
|
| 176 |
+
self.template = self.conv_template
|
| 177 |
+
if hasattr(config, 'system_message'):
|
| 178 |
+
self.system_message = config.system_message
|
| 179 |
+
self.num_samples = 0
|
| 180 |
+
|
| 181 |
+
if config.use_backbone_lora:
|
| 182 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
| 183 |
+
|
| 184 |
+
if config.use_llm_lora:
|
| 185 |
+
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
| 186 |
+
|
| 187 |
+
# mask2former
|
| 188 |
+
if mask2former is None:
|
| 189 |
+
self.mask2former = Mask2FormerForUniversalSegmentation(config.m2f_config)
|
| 190 |
+
else:
|
| 191 |
+
self.mask2former = mask2former
|
| 192 |
+
assert self.mask2former.config.num_queries == config.num_m2f_queries
|
| 193 |
+
self.num_m2f_queries =config. num_m2f_queries
|
| 194 |
+
self.num_m2f_proposals = config.num_m2f_proposals
|
| 195 |
+
self.m2f_input_size = 1024
|
| 196 |
+
|
| 197 |
+
# register functions
|
| 198 |
+
self.mask2former._post_init = MethodType(_post_init, self.mask2former)
|
| 199 |
+
self.mask2former.ov_class_predictor = MethodType(ov_class_predictor, self.mask2former)
|
| 200 |
+
self.mask2former.criterion.loss_labels = MethodType(Mask2FormerLoss_loss_labels, self.mask2former.criterion)
|
| 201 |
+
self.mask2former.criterion.loss_masks = MethodType(Mask2FormerLoss_loss_masks, self.mask2former.criterion)
|
| 202 |
+
self.mask2former.criterion.sample_points_using_uncertainty = MethodType(
|
| 203 |
+
Mask2FormerLoss_sample_points_using_uncertainty, self.mask2former.criterion)
|
| 204 |
+
self.mask2former.forward_first_part = MethodType(Mask2FormerForUniversalSegmentation_forward_first_part, self.mask2former)
|
| 205 |
+
self.mask2former.forward_second_part = MethodType(Mask2FormerForUniversalSegmentation_forward_second_part, self.mask2former)
|
| 206 |
+
self.mask2former.model.Mask2FormerModel_forward_first_part = MethodType(
|
| 207 |
+
Mask2FormerModel_forward_first_part, self.mask2former.model)
|
| 208 |
+
self.mask2former.model.Mask2FormerModel_forward_second_part = MethodType(
|
| 209 |
+
Mask2FormerModel_forward_second_part, self.mask2former.model)
|
| 210 |
+
self.mask2former.model.transformer_module.Mask2FormerTransformerModule_forward_first_part = MethodType(
|
| 211 |
+
Mask2FormerTransformerModule_forward_first_part, self.mask2former.model.transformer_module
|
| 212 |
+
)
|
| 213 |
+
self.mask2former.model.transformer_module.Mask2FormerTransformerModule_forward_second_part = MethodType(
|
| 214 |
+
Mask2FormerTransformerModule_forward_second_part, self.mask2former.model.transformer_module
|
| 215 |
+
)
|
| 216 |
+
self.mask2former.model.transformer_module.decoder.Mask2FormerMaskedAttentionDecoder_forward_first3layers = MethodType(
|
| 217 |
+
Mask2FormerMaskedAttentionDecoder_forward_first3layers, self.mask2former.model.transformer_module.decoder
|
| 218 |
+
)
|
| 219 |
+
self.mask2former.model.transformer_module.decoder.Mask2FormerMaskedAttentionDecoder_forward_last3layers = MethodType(
|
| 220 |
+
Mask2FormerMaskedAttentionDecoder_forward_last3layers, self.mask2former.model.transformer_module.decoder
|
| 221 |
+
)
|
| 222 |
+
self.mask2former.criterion.matcher.forward = MethodType(Mask2FormerHungarianMatcher_forward, self.mask2former.criterion.matcher)
|
| 223 |
+
|
| 224 |
+
# post_init of mask2former
|
| 225 |
+
self.mask2former._post_init()
|
| 226 |
+
|
| 227 |
+
out_dim = config.m2f_config.hidden_dim
|
| 228 |
+
in_dim = config.llm_config.hidden_size
|
| 229 |
+
|
| 230 |
+
self.m2f_to_llm = nn.Sequential(
|
| 231 |
+
nn.LayerNorm(out_dim,),
|
| 232 |
+
nn.Linear(out_dim, in_dim),
|
| 233 |
+
nn.GELU(),
|
| 234 |
+
nn.Linear(in_dim, in_dim)
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
self.llm_to_m2f = nn.Sequential(
|
| 238 |
+
nn.LayerNorm(in_dim),
|
| 239 |
+
nn.Linear(in_dim, out_dim * 2),
|
| 240 |
+
nn.GELU(),
|
| 241 |
+
nn.Linear(out_dim * 2, out_dim * 2)
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
self.llm_to_cls = nn.Sequential(
|
| 245 |
+
nn.LayerNorm(in_dim),
|
| 246 |
+
nn.Linear(in_dim, out_dim),
|
| 247 |
+
nn.GELU(),
|
| 248 |
+
nn.Linear(out_dim, out_dim)
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.init_prediction_config = False
|
| 252 |
+
|
| 253 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
| 254 |
+
lora_config = LoraConfig(
|
| 255 |
+
r=r,
|
| 256 |
+
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
| 257 |
+
lora_alpha=lora_alpha,
|
| 258 |
+
lora_dropout=lora_dropout,
|
| 259 |
+
)
|
| 260 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
| 261 |
+
self.vision_model.print_trainable_parameters()
|
| 262 |
+
|
| 263 |
+
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
| 264 |
+
# Determine the target modules based on the architecture of the language model
|
| 265 |
+
if self.llm_arch_name == 'InternLM2ForCausalLM':
|
| 266 |
+
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
|
| 267 |
+
elif self.llm_arch_name == 'Phi3ForCausalLM':
|
| 268 |
+
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
|
| 269 |
+
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
|
| 270 |
+
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
| 271 |
+
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
|
| 272 |
+
else:
|
| 273 |
+
raise NotImplemented
|
| 274 |
+
lora_config = LoraConfig(
|
| 275 |
+
r=r,
|
| 276 |
+
target_modules=target_modules,
|
| 277 |
+
lora_alpha=lora_alpha,
|
| 278 |
+
lora_dropout=lora_dropout,
|
| 279 |
+
task_type='CAUSAL_LM'
|
| 280 |
+
)
|
| 281 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
| 282 |
+
self.language_model.enable_input_require_grads()
|
| 283 |
+
self.language_model.print_trainable_parameters()
|
| 284 |
+
|
| 285 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
| 286 |
+
n, w, h, c = x.size()
|
| 287 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
| 288 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
| 289 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
| 290 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 291 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
| 292 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
| 293 |
+
int(c / (scale_factor * scale_factor)))
|
| 294 |
+
if self.ps_version == 'v1':
|
| 295 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
| 296 |
+
'which results in a transposed image.')
|
| 297 |
+
else:
|
| 298 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 299 |
+
return x
|
| 300 |
+
|
| 301 |
+
def extract_feature(self, pixel_values):
|
| 302 |
+
if self.select_layer == -1:
|
| 303 |
+
vit_embeds = self.vision_model(
|
| 304 |
+
pixel_values=pixel_values,
|
| 305 |
+
output_hidden_states=False,
|
| 306 |
+
return_dict=True).last_hidden_state
|
| 307 |
+
else:
|
| 308 |
+
vit_embeds = self.vision_model(
|
| 309 |
+
pixel_values=pixel_values,
|
| 310 |
+
output_hidden_states=True,
|
| 311 |
+
return_dict=True).hidden_states[self.select_layer]
|
| 312 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
| 313 |
+
|
| 314 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
| 315 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
| 316 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
| 317 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
| 318 |
+
vit_embeds = self.mlp1(vit_embeds)
|
| 319 |
+
return vit_embeds
|
| 320 |
+
|
| 321 |
+
@property
|
| 322 |
+
def lm_head(self):
|
| 323 |
+
return self.language_model.get_output_embeddings()
|
| 324 |
+
|
| 325 |
+
def get_input_embeddings(self):
|
| 326 |
+
return self.language_model.get_input_embeddings()
|
| 327 |
+
|
| 328 |
+
def get_output_embeddings(self):
|
| 329 |
+
return self.language_model.get_output_embeddings()
|
| 330 |
+
|
| 331 |
+
def forward(self, data, data_samples=None, mode='loss'):
|
| 332 |
+
pixel_values = data['pixel_values']
|
| 333 |
+
|
| 334 |
+
if type(pixel_values) is list or pixel_values.ndim == 5:
|
| 335 |
+
if type(pixel_values) is list:
|
| 336 |
+
pixel_values = [
|
| 337 |
+
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
| 338 |
+
]
|
| 339 |
+
# b*n, c, h, w
|
| 340 |
+
concat_images = torch.cat(
|
| 341 |
+
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
| 342 |
+
else:
|
| 343 |
+
raise NotImplementedError()
|
| 344 |
+
|
| 345 |
+
input_ids = data['input_ids']
|
| 346 |
+
position_ids = data['position_ids']
|
| 347 |
+
attention_mask = data['attention_mask']
|
| 348 |
+
# sum is 0 are text
|
| 349 |
+
image_flags = torch.sum(concat_images, dim=(1, 2, 3)) != 0
|
| 350 |
+
image_flags = image_flags.long()
|
| 351 |
+
|
| 352 |
+
labels = data['labels']
|
| 353 |
+
use_cache = False
|
| 354 |
+
|
| 355 |
+
if 'vp_overall_mask' not in data.keys():
|
| 356 |
+
vp_overall_mask = None
|
| 357 |
+
else:
|
| 358 |
+
vp_overall_mask = data['vp_overall_mask']
|
| 359 |
+
|
| 360 |
+
if 'prompt_masks' in data.keys():
|
| 361 |
+
prompt_masks = data['prompt_masks']
|
| 362 |
+
else:
|
| 363 |
+
prompt_masks = None
|
| 364 |
+
|
| 365 |
+
outputs = self._llm_forward(
|
| 366 |
+
input_ids=input_ids,
|
| 367 |
+
position_ids=position_ids,
|
| 368 |
+
attention_mask=attention_mask,
|
| 369 |
+
image_flags=image_flags,
|
| 370 |
+
pixel_values=concat_images,
|
| 371 |
+
labels=labels,
|
| 372 |
+
use_cache=use_cache,
|
| 373 |
+
output_hidden_states=True,
|
| 374 |
+
vp_overall_mask=vp_overall_mask,
|
| 375 |
+
prompt_masks=prompt_masks,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
return outputs
|
| 379 |
+
|
| 380 |
+
def _llm_forward(
|
| 381 |
+
self,
|
| 382 |
+
pixel_values: torch.FloatTensor,
|
| 383 |
+
input_ids: torch.LongTensor = None,
|
| 384 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 385 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 386 |
+
image_flags: Optional[torch.LongTensor] = None,
|
| 387 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 388 |
+
labels: Optional[torch.LongTensor] = None,
|
| 389 |
+
use_cache: Optional[bool] = None,
|
| 390 |
+
output_attentions: Optional[bool] = None,
|
| 391 |
+
output_hidden_states: Optional[bool] = None,
|
| 392 |
+
return_dict: Optional[bool] = None,
|
| 393 |
+
vp_overall_mask=None,
|
| 394 |
+
prompt_masks=None,
|
| 395 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 396 |
+
return_dict = return_dict if return_dict is not None \
|
| 397 |
+
else self.config.use_return_dict
|
| 398 |
+
|
| 399 |
+
image_flags = image_flags.squeeze(-1)
|
| 400 |
+
# We only added the clone code here to avoid the error.
|
| 401 |
+
input_embeds = self.language_model.get_input_embeddings()(
|
| 402 |
+
input_ids).clone()
|
| 403 |
+
|
| 404 |
+
vit_embeds = self.extract_feature(pixel_values)
|
| 405 |
+
vit_embeds = vit_embeds.to(input_embeds.dtype) # FIXME: why vit_embeds is float16?
|
| 406 |
+
fast_vit_embeds = None
|
| 407 |
+
|
| 408 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 409 |
+
vit_batch_size = pixel_values.shape[0]
|
| 410 |
+
|
| 411 |
+
B, N, C = input_embeds.shape
|
| 412 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 413 |
+
|
| 414 |
+
self._count += 1
|
| 415 |
+
|
| 416 |
+
if vp_overall_mask is not None and prompt_masks is not None:
|
| 417 |
+
vp_embeds = []
|
| 418 |
+
vp_overall_mask = vp_overall_mask.to(vit_embeds.device).bool()
|
| 419 |
+
prompt_masks = [item.to(vit_embeds.device).bool() for item in prompt_masks]
|
| 420 |
+
|
| 421 |
+
vp_overall_mask = vp_overall_mask[image_flags == 1]
|
| 422 |
+
overall_tile_vit_embeds = vit_embeds[vp_overall_mask] # (n_img, hw, c)
|
| 423 |
+
|
| 424 |
+
i_vp_img = 0
|
| 425 |
+
for i_img in range(len(vit_embeds)):
|
| 426 |
+
vp_embeds.append(vit_embeds[i_img].reshape(-1, C))
|
| 427 |
+
if vp_overall_mask[i_img]:
|
| 428 |
+
tile_vit_embeds = overall_tile_vit_embeds[i_vp_img].reshape(-1, C) # (hw, C)
|
| 429 |
+
objects_prompt_masks = prompt_masks[i_vp_img]
|
| 430 |
+
n_obj = len(objects_prompt_masks)
|
| 431 |
+
tile_vit_embeds = tile_vit_embeds.unsqueeze(0).repeat(n_obj, 1, 1)
|
| 432 |
+
objects_prompt_masks = objects_prompt_masks.reshape(n_obj, -1)
|
| 433 |
+
vp_embeds.append(tile_vit_embeds[objects_prompt_masks])
|
| 434 |
+
i_vp_img += 1
|
| 435 |
+
vp_embeds = torch.cat(vp_embeds, dim=0)
|
| 436 |
+
else:
|
| 437 |
+
vp_embeds = None
|
| 438 |
+
|
| 439 |
+
input_ids = input_ids.reshape(B * N)
|
| 440 |
+
selected = (input_ids == self.img_context_token_id)
|
| 441 |
+
|
| 442 |
+
if vp_embeds is None:
|
| 443 |
+
try:
|
| 444 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C)
|
| 445 |
+
except Exception as e:
|
| 446 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
| 447 |
+
print(f'warning: {e}, input_embeds[selected].shape='
|
| 448 |
+
f'{input_embeds[selected].shape}, '
|
| 449 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
| 450 |
+
n_token = selected.sum()
|
| 451 |
+
if n_token > len(vit_embeds):
|
| 452 |
+
print(f"Wrong !!! {n_token} image tokens in text but only {len(vit_embeds)} vit embeds !!!")
|
| 453 |
+
expand_ratio = n_token // len(vit_embeds) + 1
|
| 454 |
+
vit_embeds = torch.cat([vit_embeds] * expand_ratio, dim=0)
|
| 455 |
+
|
| 456 |
+
input_embeds[selected] = vit_embeds[:n_token]
|
| 457 |
+
else:
|
| 458 |
+
try:
|
| 459 |
+
input_embeds[selected] = vp_embeds.reshape(-1, C)
|
| 460 |
+
except Exception as e:
|
| 461 |
+
vp_embeds = vp_embeds.reshape(-1, C)
|
| 462 |
+
print(f'warning: {e}, input_embeds[selected].shape='
|
| 463 |
+
f'{input_embeds[selected].shape}, '
|
| 464 |
+
f'vp_embeds.shape={vp_embeds.shape}')
|
| 465 |
+
n_token = selected.sum()
|
| 466 |
+
if n_token > len(vp_embeds):
|
| 467 |
+
print(f"Wrong !!! {n_token} image tokens in text but only {len(vp_embeds)} vit embeds !!!")
|
| 468 |
+
expand_ratio = n_token // len(vp_embeds) + 1
|
| 469 |
+
vp_embeds = torch.cat([vp_embeds] * expand_ratio, dim=0)
|
| 470 |
+
|
| 471 |
+
input_embeds[selected] = vp_embeds[:n_token]
|
| 472 |
+
|
| 473 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 474 |
+
|
| 475 |
+
outputs = self.language_model(
|
| 476 |
+
inputs_embeds=input_embeds,
|
| 477 |
+
attention_mask=attention_mask,
|
| 478 |
+
position_ids=position_ids,
|
| 479 |
+
past_key_values=past_key_values,
|
| 480 |
+
use_cache=use_cache,
|
| 481 |
+
output_attentions=output_attentions,
|
| 482 |
+
output_hidden_states=output_hidden_states,
|
| 483 |
+
return_dict=return_dict,
|
| 484 |
+
)
|
| 485 |
+
logits = outputs.logits
|
| 486 |
+
|
| 487 |
+
loss = None
|
| 488 |
+
if labels is not None:
|
| 489 |
+
# Shift so that tokens < n predict n
|
| 490 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 491 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 492 |
+
# Flatten the tokens
|
| 493 |
+
loss_fct = CrossEntropyLoss()
|
| 494 |
+
shift_logits = shift_logits.view(
|
| 495 |
+
-1, self.language_model.config.vocab_size)
|
| 496 |
+
shift_labels = shift_labels.view(-1)
|
| 497 |
+
# Enable model parallelism
|
| 498 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 499 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 500 |
+
|
| 501 |
+
if not return_dict:
|
| 502 |
+
output = (logits,) + outputs[1:]
|
| 503 |
+
return (loss,) + output if loss is not None else output
|
| 504 |
+
|
| 505 |
+
return CausalLMOutputWithPast(
|
| 506 |
+
loss=loss,
|
| 507 |
+
logits=logits,
|
| 508 |
+
past_key_values=outputs.past_key_values,
|
| 509 |
+
hidden_states=outputs.hidden_states,
|
| 510 |
+
attentions=outputs.attentions,
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
@torch.no_grad()
|
| 514 |
+
def generate(
|
| 515 |
+
self,
|
| 516 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 517 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
| 518 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 519 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
| 520 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 521 |
+
output_hidden_states: Optional[bool] = None,
|
| 522 |
+
return_dict: Optional[bool] = None,
|
| 523 |
+
prompt_masks=None,
|
| 524 |
+
vp_overall_mask=None,
|
| 525 |
+
query_embeds=None,
|
| 526 |
+
**generate_kwargs,
|
| 527 |
+
) -> torch.LongTensor:
|
| 528 |
+
device = self.device
|
| 529 |
+
assert self.img_context_token_id is not None
|
| 530 |
+
|
| 531 |
+
if pixel_values is not None:
|
| 532 |
+
if visual_features is not None:
|
| 533 |
+
vit_embeds = visual_features
|
| 534 |
+
else:
|
| 535 |
+
if type(pixel_values) is list or pixel_values.ndim == 5:
|
| 536 |
+
if type(pixel_values) is list:
|
| 537 |
+
pixel_values = [
|
| 538 |
+
x.unsqueeze(0) if x.ndim == 3 else x for x in pixel_values
|
| 539 |
+
]
|
| 540 |
+
# b*n, c, h, w
|
| 541 |
+
pixel_values = torch.cat(
|
| 542 |
+
[image.to(self.vision_model.dtype) for image in pixel_values], dim=0)
|
| 543 |
+
|
| 544 |
+
vit_embeds = self.extract_feature(pixel_values.to(device))
|
| 545 |
+
image_flags = torch.sum(pixel_values, dim=(1, 2, 3)) != 0
|
| 546 |
+
image_flags = image_flags.long()
|
| 547 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
| 548 |
+
|
| 549 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids.to(device))
|
| 550 |
+
B, N, C = input_embeds.shape
|
| 551 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
| 552 |
+
|
| 553 |
+
input_ids = input_ids.reshape(B * N)
|
| 554 |
+
selected = (input_ids == self.img_context_token_id)
|
| 555 |
+
assert selected.sum() != 0
|
| 556 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
| 557 |
+
|
| 558 |
+
# object queries
|
| 559 |
+
query_embeds = query_embeds.to(input_embeds.dtype)
|
| 560 |
+
selected = (input_ids == self.obj_context_token_id)
|
| 561 |
+
input_embeds[selected] = query_embeds.reshape(-1, C)
|
| 562 |
+
|
| 563 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
| 564 |
+
else:
|
| 565 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 566 |
+
|
| 567 |
+
outputs = self.language_model.generate(
|
| 568 |
+
inputs_embeds=input_embeds,
|
| 569 |
+
attention_mask=attention_mask.to(device),
|
| 570 |
+
generation_config=generation_config,
|
| 571 |
+
output_hidden_states=output_hidden_states,
|
| 572 |
+
# return_dict=return_dict,
|
| 573 |
+
use_cache=True,
|
| 574 |
+
**generate_kwargs,
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
return outputs
|
| 578 |
+
|
| 579 |
+
def preparing_for_generation(self, tokenizer, max_new_tokens=2048, torch_dtype=torch.bfloat16):
|
| 580 |
+
# set stop criteria and generation configs for model
|
| 581 |
+
if not hasattr(self, 'tokenizer'):
|
| 582 |
+
self.tokenizer = tokenizer
|
| 583 |
+
self.bot_name = 'BOT'
|
| 584 |
+
stop_words = []
|
| 585 |
+
stop_words += self.template.get('STOP_WORDS', [])
|
| 586 |
+
stop_criteria = get_stop_criteria(
|
| 587 |
+
tokenizer=self.tokenizer, stop_words=stop_words)
|
| 588 |
+
self.stop_criteria = stop_criteria
|
| 589 |
+
|
| 590 |
+
default_generation_kwargs = dict(
|
| 591 |
+
max_new_tokens=max_new_tokens,
|
| 592 |
+
do_sample=False,
|
| 593 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 594 |
+
pad_token_id=(
|
| 595 |
+
self.tokenizer.pad_token_id
|
| 596 |
+
if self.tokenizer.pad_token_id is not None
|
| 597 |
+
else self.tokenizer.eos_token_id
|
| 598 |
+
),
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
self.gen_config = GenerationConfig(**default_generation_kwargs)
|
| 602 |
+
self.init_prediction_config = True
|
| 603 |
+
self.torch_dtype = torch_dtype
|
| 604 |
+
self.to(torch_dtype)
|
| 605 |
+
self.extra_image_processor = DirectResize(target_length=1024, )
|
| 606 |
+
# for multi image process
|
| 607 |
+
self.min_dynamic_patch = 1
|
| 608 |
+
self.max_dynamic_patch = 12
|
| 609 |
+
self.downsample_ratio = 0.5
|
| 610 |
+
self.image_size = 448
|
| 611 |
+
self.use_thumbnail = True
|
| 612 |
+
patch_size = 14
|
| 613 |
+
self.patch_size = patch_size
|
| 614 |
+
|
| 615 |
+
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2))
|
| 616 |
+
self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 617 |
+
self.IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 618 |
+
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
| 619 |
+
self.IMG_START_TOKEN = '<img>'
|
| 620 |
+
self.IMG_END_TOKEN = '</img>'
|
| 621 |
+
|
| 622 |
+
self.transformer = T.Compose([
|
| 623 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 624 |
+
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC),
|
| 625 |
+
T.ToTensor(),
|
| 626 |
+
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
|
| 627 |
+
])
|
| 628 |
+
|
| 629 |
+
# change phi3 prepare for generation fuction
|
| 630 |
+
if self.config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
| 631 |
+
self.language_model.prepare_inputs_for_generation = MethodType(prepare_inputs_for_generation_phi3, self.language_model)
|
| 632 |
+
|
| 633 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 634 |
+
self.img_context_token_id = img_context_token_id
|
| 635 |
+
obj_context_token_id = tokenizer.convert_tokens_to_ids(OBJ_CONTEXT_TOKEN)
|
| 636 |
+
self.obj_context_token_id = obj_context_token_id
|
| 637 |
+
|
| 638 |
+
self.PROPOSAL_TOKENS = [SEG_TOKEN.format(id=str(i).zfill(3)) for i in range(self.num_m2f_proposals)]
|
| 639 |
+
self.the_first_seg_token_idx = self.tokenizer(self.PROPOSAL_TOKENS[0], add_special_tokens=False).input_ids[0]
|
| 640 |
+
self.the_last_seg_token_idx = self.tokenizer(self.PROPOSAL_TOKENS[-1], add_special_tokens=False).input_ids[0]
|
| 641 |
+
self.cls_token_idx = self.tokenizer(CLS_TOKEN, add_special_tokens=False).input_ids[0]
|
| 642 |
+
self.bg_cls_token_idx = self.tokenizer(BG_CLS_TOKEN, add_special_tokens=False).input_ids[0]
|
| 643 |
+
|
| 644 |
+
return
|
| 645 |
+
|
| 646 |
+
def predict_forward(
|
| 647 |
+
self,
|
| 648 |
+
image=None,
|
| 649 |
+
video=None,
|
| 650 |
+
text=None,
|
| 651 |
+
past_text='',
|
| 652 |
+
mask_prompts=None,
|
| 653 |
+
tokenizer=None,
|
| 654 |
+
m2f_processor=None,
|
| 655 |
+
):
|
| 656 |
+
if not self.init_prediction_config:
|
| 657 |
+
assert tokenizer
|
| 658 |
+
self.preparing_for_generation(tokenizer=tokenizer)
|
| 659 |
+
|
| 660 |
+
if image is None and video is None and '<image>' not in past_text:
|
| 661 |
+
text = text.replace('<image>', "")
|
| 662 |
+
input_text = ''
|
| 663 |
+
input_text += self.template['INSTRUCTION'].format(
|
| 664 |
+
input=text, round=1, bot_name=self.bot_name)
|
| 665 |
+
input_text = past_text + input_text
|
| 666 |
+
ids = self.tokenizer.encode(input_text)
|
| 667 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
| 668 |
+
|
| 669 |
+
attention_mask = torch.ones_like(ids, dtype=torch.bool)
|
| 670 |
+
|
| 671 |
+
mm_inputs = {
|
| 672 |
+
'pixel_values': None,
|
| 673 |
+
'input_ids': ids,
|
| 674 |
+
'attention_mask': attention_mask,
|
| 675 |
+
'position_ids': None,
|
| 676 |
+
'past_key_values': None,
|
| 677 |
+
'labels': None,
|
| 678 |
+
'prompt_masks': None,
|
| 679 |
+
'vp_overall_mask': None,
|
| 680 |
+
'm2f_inputs': None,
|
| 681 |
+
}
|
| 682 |
+
else:
|
| 683 |
+
input_dict = {}
|
| 684 |
+
if video is not None:
|
| 685 |
+
pixel_values = []
|
| 686 |
+
ori_image_size = video[0].size
|
| 687 |
+
for frame_idx, frame_image in enumerate(video):
|
| 688 |
+
assert ori_image_size == frame_image.size
|
| 689 |
+
img = self.transformer(frame_image)
|
| 690 |
+
pixel_values.append(img)
|
| 691 |
+
|
| 692 |
+
pixel_values = torch.stack(pixel_values, dim=0).to(self.torch_dtype) # (n_f, 3, h, w)
|
| 693 |
+
num_image_tokens = self.patch_token
|
| 694 |
+
num_frames = len(pixel_values)
|
| 695 |
+
|
| 696 |
+
# prepapre mask2former inputs
|
| 697 |
+
m2f_pixel_values, m2f_pixel_masks = [], []
|
| 698 |
+
for frame_idx, frame_image in enumerate(video):
|
| 699 |
+
assert ori_image_size == frame_image.size
|
| 700 |
+
w, h = frame_image.size
|
| 701 |
+
if w > h:
|
| 702 |
+
target_size = (self.m2f_input_size, int(h/w*self.m2f_input_size))
|
| 703 |
+
else:
|
| 704 |
+
target_size = (int(w/h*self.m2f_input_size), self.m2f_input_size)
|
| 705 |
+
|
| 706 |
+
resized_frame_image = frame_image.resize(target_size)
|
| 707 |
+
cur_w, cur_h = resized_frame_image.size
|
| 708 |
+
padded_frame_image = np.ones(shape=(self.m2f_input_size, self.m2f_input_size, 3), dtype=np.uint8) * 255
|
| 709 |
+
padded_frame_image[:cur_h, :cur_w, :] = np.array(resized_frame_image)
|
| 710 |
+
m2f_inputs_i = m2f_processor(images=Image.fromarray(padded_frame_image), return_tensors="pt", do_resize=False)
|
| 711 |
+
m2f_pixel_values.append(m2f_inputs_i['pixel_values'])
|
| 712 |
+
m2f_pixel_masks.append(m2f_inputs_i['pixel_mask'])
|
| 713 |
+
m2f_inputs = {
|
| 714 |
+
'pixel_values': torch.cat(m2f_pixel_values, dim=0),
|
| 715 |
+
'pixel_mask': torch.cat(m2f_pixel_masks, dim=0)}
|
| 716 |
+
else:
|
| 717 |
+
ori_image_size = image.size
|
| 718 |
+
|
| 719 |
+
images = dynamic_preprocess(image, self.min_dynamic_patch,
|
| 720 |
+
self.max_dynamic_patch,
|
| 721 |
+
self.image_size, self.use_thumbnail)
|
| 722 |
+
|
| 723 |
+
pixel_values = [self.transformer(patch) for patch in images]
|
| 724 |
+
pixel_values = torch.stack(pixel_values).to(self.torch_dtype)
|
| 725 |
+
num_image_tokens = pixel_values.shape[0] * self.patch_token
|
| 726 |
+
num_frames = 1
|
| 727 |
+
|
| 728 |
+
w, h = image.size
|
| 729 |
+
if w > h:
|
| 730 |
+
target_size = (self.m2f_input_size, int(h/w*self.m2f_input_size))
|
| 731 |
+
else:
|
| 732 |
+
target_size = (int(w/h*self.m2f_input_size), self.m2f_input_size)
|
| 733 |
+
|
| 734 |
+
resized_image = image.resize(target_size)
|
| 735 |
+
cur_w, cur_h = resized_image.size
|
| 736 |
+
padded_image = np.ones(shape=(self.m2f_input_size, self.m2f_input_size, 3), dtype=np.uint8) * 255
|
| 737 |
+
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
|
| 738 |
+
m2f_inputs = m2f_processor(images=Image.fromarray(padded_image), return_tensors="pt", do_resize=False)
|
| 739 |
+
|
| 740 |
+
input_dict['pixel_values'] = pixel_values
|
| 741 |
+
|
| 742 |
+
#TODO add a frame tag to indicate the order
|
| 743 |
+
image_token_str = f'{self.IMG_START_TOKEN}' \
|
| 744 |
+
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \
|
| 745 |
+
f'{self.IMG_END_TOKEN}'
|
| 746 |
+
object_token_str = f"{OBJ_START_TOKEN}"\
|
| 747 |
+
f"{OBJ_CONTEXT_TOKEN * self.num_m2f_queries}"\
|
| 748 |
+
f"{OBJ_END_TOKEN}"
|
| 749 |
+
image_token_str = image_token_str + '\n' + object_token_str + '\n'
|
| 750 |
+
image_token_str = image_token_str * num_frames
|
| 751 |
+
image_token_str = image_token_str.strip()
|
| 752 |
+
|
| 753 |
+
if '<image>' in text or mask_prompts is not None:
|
| 754 |
+
assert past_text is None or len(past_text) == 0
|
| 755 |
+
text = text.replace('<image>', image_token_str)
|
| 756 |
+
input_text = ''
|
| 757 |
+
input_text += self.template['INSTRUCTION'].format(
|
| 758 |
+
input=text, round=1, bot_name=self.bot_name)
|
| 759 |
+
input_text = past_text + input_text
|
| 760 |
+
ids = self.tokenizer.encode(input_text)
|
| 761 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
| 762 |
+
|
| 763 |
+
attention_mask = torch.ones_like(ids, dtype=torch.bool)
|
| 764 |
+
|
| 765 |
+
# encode multi-scale visual features into 100~300 queries
|
| 766 |
+
m2f_inputs['pixel_values'] = m2f_inputs['pixel_values'].to(self.mask2former.dtype).to(self.mask2former.device)
|
| 767 |
+
m2f_inputs['pixel_mask'] = m2f_inputs['pixel_mask'].to(self.mask2former.dtype).to(self.mask2former.device)
|
| 768 |
+
query_features, pixel_level_module_output = \
|
| 769 |
+
self.mask2former.forward_first_part(**m2f_inputs)
|
| 770 |
+
query_embeds = self.m2f_to_llm(query_features) # BS, m2f_NQ, 2048
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
mm_inputs = {
|
| 774 |
+
'pixel_values': input_dict['pixel_values'],
|
| 775 |
+
'input_ids': ids,
|
| 776 |
+
'attention_mask': attention_mask,
|
| 777 |
+
'position_ids': None,
|
| 778 |
+
'past_key_values': None,
|
| 779 |
+
'labels': None,
|
| 780 |
+
'query_embeds': query_embeds,
|
| 781 |
+
# 'prompt_masks': mask_prompts,
|
| 782 |
+
# 'vp_overall_mask': input_dict['vp_overall_mask'],
|
| 783 |
+
}
|
| 784 |
+
|
| 785 |
+
generate_output = self.generate(
|
| 786 |
+
**mm_inputs,
|
| 787 |
+
generation_config=self.gen_config,
|
| 788 |
+
streamer=None,
|
| 789 |
+
bos_token_id=self.tokenizer.bos_token_id,
|
| 790 |
+
stopping_criteria=self.stop_criteria,
|
| 791 |
+
output_hidden_states=True,
|
| 792 |
+
return_dict_in_generate=True
|
| 793 |
+
)
|
| 794 |
+
predict = self.tokenizer.decode(
|
| 795 |
+
generate_output.sequences[0], skip_special_tokens=False).strip()
|
| 796 |
+
|
| 797 |
+
ret_masks = []
|
| 798 |
+
if image is None and video is None and '<image>' not in past_text:
|
| 799 |
+
return {'prediction': predict, 'prediction_masks': ret_masks, 'm2f_outputs': None}
|
| 800 |
+
|
| 801 |
+
# if have seg result, find the seg hidden states
|
| 802 |
+
hidden_states = generate_output.hidden_states
|
| 803 |
+
last_hidden_states = [item[-1][0] for item in hidden_states]
|
| 804 |
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
| 805 |
+
|
| 806 |
+
# get cls tokens
|
| 807 |
+
bg_cls_token_id = torch.as_tensor([self.bg_cls_token_idx,], dtype=ids.dtype, device=ids.device)
|
| 808 |
+
bg_cls_embedding = self.language_model.get_input_embeddings()(bg_cls_token_id).clone()
|
| 809 |
+
output_ids = generate_output.sequences[0][:-1]
|
| 810 |
+
cls_token_mask = ids == self.cls_token_idx
|
| 811 |
+
|
| 812 |
+
# get seg tokens
|
| 813 |
+
seg_token_mask = (output_ids >= self.the_first_seg_token_idx) & (output_ids <= self.the_last_seg_token_idx)
|
| 814 |
+
|
| 815 |
+
do_pano_seg = torch.any(cls_token_mask) & torch.any(seg_token_mask)
|
| 816 |
+
|
| 817 |
+
reason_cls_token_mask = output_ids == self.cls_token_idx
|
| 818 |
+
|
| 819 |
+
do_reason_seg = torch.any(reason_cls_token_mask) & torch.any(seg_token_mask)
|
| 820 |
+
|
| 821 |
+
if not do_pano_seg and not do_reason_seg:
|
| 822 |
+
return {'prediction': predict, 'prediction_masks': ret_masks, 'm2f_outputs': None}
|
| 823 |
+
|
| 824 |
+
# get seg tokens
|
| 825 |
+
seg_hidden_states = last_hidden_states[-len(seg_token_mask):][seg_token_mask].unsqueeze(0)
|
| 826 |
+
seg_hidden_states = self.llm_to_m2f(seg_hidden_states)
|
| 827 |
+
|
| 828 |
+
if do_pano_seg:
|
| 829 |
+
cls_hidden_states = last_hidden_states[:len(cls_token_mask)][cls_token_mask]
|
| 830 |
+
text_classifier = self.llm_to_cls(torch.cat([cls_hidden_states, bg_cls_embedding], dim=0))
|
| 831 |
+
seg_hidden_states = seg_hidden_states.transpose(0, 1)
|
| 832 |
+
|
| 833 |
+
# proposals go through mask2former decoder layers
|
| 834 |
+
m2f_outputs = self.mask2former.forward_second_part(
|
| 835 |
+
query_features=seg_hidden_states[:, :, :self.mask2former.config.hidden_dim], # q, b, c
|
| 836 |
+
query_embeddings=seg_hidden_states[:, :, self.mask2former.config.hidden_dim:], # q, b, c
|
| 837 |
+
pixel_level_module_output=pixel_level_module_output,
|
| 838 |
+
text_classifier=[text_classifier, ],
|
| 839 |
+
mask_labels=None,
|
| 840 |
+
class_labels=None,
|
| 841 |
+
**m2f_inputs
|
| 842 |
+
)
|
| 843 |
+
|
| 844 |
+
tags = re.findall(r'<p>(.*?)</p>', predict)
|
| 845 |
+
label_id_to_text = {id: tag for id, tag in enumerate(tags)}
|
| 846 |
+
|
| 847 |
+
class_queries_logits = m2f_outputs.class_queries_logits
|
| 848 |
+
masks_queries_logits = m2f_outputs.masks_queries_logits
|
| 849 |
+
|
| 850 |
+
m2f_masks = {'label_id_to_text': label_id_to_text,
|
| 851 |
+
'class_queries_logits': class_queries_logits,
|
| 852 |
+
'masks_queries_logits': masks_queries_logits}
|
| 853 |
+
|
| 854 |
+
return {'prediction': predict, 'prediction_masks': ret_masks, 'm2f_outputs': m2f_masks}
|
| 855 |
+
elif do_reason_seg:
|
| 856 |
+
raise NotImplementedError
|
| 857 |
+
else:
|
| 858 |
+
raise NotImplementedError
|
| 859 |
+
|
| 860 |
+
def post_process_panoptic_segmentation(
|
| 861 |
+
self,
|
| 862 |
+
class_queries_logits,
|
| 863 |
+
masks_queries_logits,
|
| 864 |
+
threshold: float = 0.5,
|
| 865 |
+
mask_threshold: float = 0.5,
|
| 866 |
+
overlap_mask_area_threshold: float = 0.8,
|
| 867 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
| 868 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
| 869 |
+
) -> List[Dict]:
|
| 870 |
+
|
| 871 |
+
if label_ids_to_fuse is None:
|
| 872 |
+
logger.warning("`label_ids_to_fuse` unset. No instance will be fused.")
|
| 873 |
+
label_ids_to_fuse = set()
|
| 874 |
+
|
| 875 |
+
batch_size = len(class_queries_logits)
|
| 876 |
+
|
| 877 |
+
# Loop over items in batch size
|
| 878 |
+
results: List[Dict[str, TensorType]] = []
|
| 879 |
+
|
| 880 |
+
for i in range(batch_size):
|
| 881 |
+
height, width = target_sizes[i]
|
| 882 |
+
long_edge = height if height > width else width
|
| 883 |
+
masks_queries_logits_i = torch.nn.functional.interpolate(
|
| 884 |
+
masks_queries_logits[i:i+1], size=(long_edge, long_edge), mode="bilinear", align_corners=False
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
mask_probs = masks_queries_logits_i[0].sigmoid()
|
| 888 |
+
|
| 889 |
+
num_labels = class_queries_logits[i].shape[-1] - 1
|
| 890 |
+
|
| 891 |
+
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits[i], dim=-1).max(-1)
|
| 892 |
+
|
| 893 |
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
|
| 894 |
+
mask_probs, pred_scores, pred_labels, threshold, num_labels
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
# No mask found
|
| 898 |
+
if mask_probs_item.shape[0] <= 0:
|
| 899 |
+
segmentation = torch.zeros((height, width)) - 1
|
| 900 |
+
results.append({"segmentation": segmentation, "segments_info": []})
|
| 901 |
+
continue
|
| 902 |
+
|
| 903 |
+
# Get segmentation map and segment information of batch item
|
| 904 |
+
target_size = target_sizes[i] if target_sizes is not None else None
|
| 905 |
+
segmentation, segments = compute_segments(
|
| 906 |
+
mask_probs=mask_probs_item,
|
| 907 |
+
pred_scores=pred_scores_item,
|
| 908 |
+
pred_labels=pred_labels_item,
|
| 909 |
+
mask_threshold=mask_threshold,
|
| 910 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
| 911 |
+
label_ids_to_fuse=label_ids_to_fuse,
|
| 912 |
+
target_size=target_size,
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
results.append({"segmentation": segmentation, "segments_info": segments})
|
| 916 |
+
|
| 917 |
+
return results
|
| 918 |
+
|
| 919 |
+
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
|
| 920 |
+
seg_mask = output_ids == seg_id
|
| 921 |
+
n_out = len(seg_mask)
|
| 922 |
+
if n_out == 0:
|
| 923 |
+
return hidden_states[0:0]
|
| 924 |
+
return hidden_states[-n_out:][seg_mask]
|
| 925 |
+
|
| 926 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
|
| 927 |
+
image_size):
|
| 928 |
+
best_ratio_diff = float('inf')
|
| 929 |
+
best_ratio = (1, 1)
|
| 930 |
+
area = width * height
|
| 931 |
+
for ratio in target_ratios:
|
| 932 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 933 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 934 |
+
if ratio_diff < best_ratio_diff:
|
| 935 |
+
best_ratio_diff = ratio_diff
|
| 936 |
+
best_ratio = ratio
|
| 937 |
+
elif ratio_diff == best_ratio_diff:
|
| 938 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 939 |
+
best_ratio = ratio
|
| 940 |
+
return best_ratio
|
| 941 |
+
|
| 942 |
+
def dynamic_preprocess(image,
|
| 943 |
+
min_num=1,
|
| 944 |
+
max_num=6,
|
| 945 |
+
image_size=448,
|
| 946 |
+
use_thumbnail=False):
|
| 947 |
+
orig_width, orig_height = image.size
|
| 948 |
+
aspect_ratio = orig_width / orig_height
|
| 949 |
+
|
| 950 |
+
# calculate the existing image aspect ratio
|
| 951 |
+
target_ratios = {(i, j)
|
| 952 |
+
for n in range(min_num, max_num + 1)
|
| 953 |
+
for i in range(1, n + 1) for j in range(1, n + 1)
|
| 954 |
+
if i * j <= max_num and i * j >= min_num}
|
| 955 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 956 |
+
|
| 957 |
+
# find the closest aspect ratio to the target
|
| 958 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
|
| 959 |
+
target_ratios, orig_width,
|
| 960 |
+
orig_height, image_size)
|
| 961 |
+
|
| 962 |
+
# calculate the target width and height
|
| 963 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 964 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 965 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 966 |
+
|
| 967 |
+
# resize the image
|
| 968 |
+
resized_img = image.resize((target_width, target_height))
|
| 969 |
+
processed_images = []
|
| 970 |
+
for i in range(blocks):
|
| 971 |
+
box = ((i % (target_width // image_size)) * image_size,
|
| 972 |
+
(i // (target_width // image_size)) * image_size,
|
| 973 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 974 |
+
((i // (target_width // image_size)) + 1) * image_size)
|
| 975 |
+
# split the image
|
| 976 |
+
split_img = resized_img.crop(box)
|
| 977 |
+
processed_images.append(split_img)
|
| 978 |
+
assert len(processed_images) == blocks
|
| 979 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 980 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 981 |
+
processed_images.append(thumbnail_img)
|
| 982 |
+
return processed_images
|
| 983 |
+
|
| 984 |
+
|
| 985 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 986 |
+
|
| 987 |
+
def prepare_inputs_for_generation_phi3(
|
| 988 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 989 |
+
):
|
| 990 |
+
if past_key_values is not None:
|
| 991 |
+
if isinstance(past_key_values, Cache):
|
| 992 |
+
cache_length = past_key_values.get_seq_length()
|
| 993 |
+
past_length = past_key_values.seen_tokens
|
| 994 |
+
max_cache_length = past_key_values.get_max_length()
|
| 995 |
+
else:
|
| 996 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 997 |
+
max_cache_length = None
|
| 998 |
+
|
| 999 |
+
# Keep only the unprocessed tokens:
|
| 1000 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1001 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1002 |
+
# input)
|
| 1003 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1004 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
| 1005 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1006 |
+
# input_ids based on the past_length.
|
| 1007 |
+
elif past_length < input_ids.shape[1]:
|
| 1008 |
+
input_ids = input_ids[:, past_length:]
|
| 1009 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1010 |
+
|
| 1011 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1012 |
+
if (
|
| 1013 |
+
max_cache_length is not None
|
| 1014 |
+
and attention_mask is not None
|
| 1015 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1016 |
+
):
|
| 1017 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1018 |
+
|
| 1019 |
+
position_ids = kwargs.get('position_ids', None)
|
| 1020 |
+
if attention_mask is not None and position_ids is None:
|
| 1021 |
+
# create position_ids on the fly for batch generation
|
| 1022 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1023 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1024 |
+
if past_key_values:
|
| 1025 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
| 1026 |
+
|
| 1027 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1028 |
+
if inputs_embeds is not None and (past_key_values is None or len(past_key_values)==0):
|
| 1029 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
| 1030 |
+
else:
|
| 1031 |
+
model_inputs = {'input_ids': input_ids}
|
| 1032 |
+
|
| 1033 |
+
model_inputs.update(
|
| 1034 |
+
{
|
| 1035 |
+
'position_ids': position_ids,
|
| 1036 |
+
'past_key_values': past_key_values,
|
| 1037 |
+
'use_cache': kwargs.get('use_cache'),
|
| 1038 |
+
'attention_mask': attention_mask,
|
| 1039 |
+
}
|
| 1040 |
+
)
|
| 1041 |
+
return model_inputs
|
| 1042 |
+
|
| 1043 |
+
|
| 1044 |
+
# Copied from transformers.models.detr.image_processing_detr.compute_segments
|
| 1045 |
+
def compute_segments(
|
| 1046 |
+
mask_probs,
|
| 1047 |
+
pred_scores,
|
| 1048 |
+
pred_labels,
|
| 1049 |
+
mask_threshold: float = 0.5,
|
| 1050 |
+
overlap_mask_area_threshold: float = 0.8,
|
| 1051 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
| 1052 |
+
target_size: Tuple[int, int] = None,
|
| 1053 |
+
):
|
| 1054 |
+
height = mask_probs.shape[1] if target_size is None else target_size[0]
|
| 1055 |
+
width = mask_probs.shape[2] if target_size is None else target_size[1]
|
| 1056 |
+
|
| 1057 |
+
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
|
| 1058 |
+
segments: List[Dict] = []
|
| 1059 |
+
|
| 1060 |
+
if target_size is not None:
|
| 1061 |
+
mask_probs = mask_probs[..., :height, :width]
|
| 1062 |
+
|
| 1063 |
+
current_segment_id = 0
|
| 1064 |
+
|
| 1065 |
+
# Weigh each mask by its prediction score
|
| 1066 |
+
mask_probs *= pred_scores.view(-1, 1, 1)
|
| 1067 |
+
mask_labels = mask_probs.argmax(0) # [height, width]
|
| 1068 |
+
|
| 1069 |
+
# Keep track of instances of each class
|
| 1070 |
+
stuff_memory_list: Dict[str, int] = {}
|
| 1071 |
+
for k in range(pred_labels.shape[0]):
|
| 1072 |
+
pred_class = pred_labels[k].item()
|
| 1073 |
+
should_fuse = pred_class in label_ids_to_fuse
|
| 1074 |
+
|
| 1075 |
+
# Check if mask exists and large enough to be a segment
|
| 1076 |
+
mask_exists, mask_k = check_segment_validity(
|
| 1077 |
+
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
if mask_exists:
|
| 1081 |
+
if pred_class in stuff_memory_list:
|
| 1082 |
+
current_segment_id = stuff_memory_list[pred_class]
|
| 1083 |
+
else:
|
| 1084 |
+
current_segment_id += 1
|
| 1085 |
+
|
| 1086 |
+
# Add current object segment to final segmentation map
|
| 1087 |
+
segmentation[mask_k] = current_segment_id
|
| 1088 |
+
segment_score = round(pred_scores[k].item(), 6)
|
| 1089 |
+
segments.append(
|
| 1090 |
+
{
|
| 1091 |
+
"id": current_segment_id,
|
| 1092 |
+
"label_id": pred_class,
|
| 1093 |
+
"was_fused": should_fuse,
|
| 1094 |
+
"score": segment_score,
|
| 1095 |
+
}
|
| 1096 |
+
)
|
| 1097 |
+
if should_fuse:
|
| 1098 |
+
stuff_memory_list[pred_class] = current_segment_id
|
| 1099 |
+
|
| 1100 |
+
return segmentation, segments
|
sam2.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>",
|
| 16 |
+
"<img>",
|
| 17 |
+
"</img>",
|
| 18 |
+
"<IMG_CONTEXT>",
|
| 19 |
+
"<quad>",
|
| 20 |
+
"</quad>",
|
| 21 |
+
"<ref>",
|
| 22 |
+
"</ref>",
|
| 23 |
+
"<box>",
|
| 24 |
+
"</box>"
|
| 25 |
+
],
|
| 26 |
+
"eos_token": {
|
| 27 |
+
"content": "<|im_end|>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
},
|
| 33 |
+
"pad_token": {
|
| 34 |
+
"content": "<|endoftext|>",
|
| 35 |
+
"lstrip": false,
|
| 36 |
+
"normalized": false,
|
| 37 |
+
"rstrip": false,
|
| 38 |
+
"single_word": false
|
| 39 |
+
}
|
| 40 |
+
}
|
templates.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
PROMPT_TEMPLATE = dict(
|
| 3 |
+
default=dict(
|
| 4 |
+
SYSTEM='<|System|>:{system}\n',
|
| 5 |
+
INSTRUCTION='<|User|>:{input}\n<|Bot|>:',
|
| 6 |
+
SEP='\n'),
|
| 7 |
+
zephyr=dict(
|
| 8 |
+
SYSTEM='<|system|>\n{system}\n',
|
| 9 |
+
INSTRUCTION='<|user|>\n{input}\n<|assistant|>\n',
|
| 10 |
+
SEP='\n'),
|
| 11 |
+
internlm_chat=dict(
|
| 12 |
+
SYSTEM='<|System|>:{system}\n',
|
| 13 |
+
INSTRUCTION='<|User|>:{input}<eoh>\n<|Bot|>:',
|
| 14 |
+
SUFFIX='<eoa>',
|
| 15 |
+
SUFFIX_AS_EOS=True,
|
| 16 |
+
SEP='\n',
|
| 17 |
+
STOP_WORDS=['<eoa>']),
|
| 18 |
+
internlm2_chat=dict(
|
| 19 |
+
SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
|
| 20 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
| 21 |
+
'<|im_start|>assistant\n'),
|
| 22 |
+
SUFFIX='<|im_end|>',
|
| 23 |
+
SUFFIX_AS_EOS=True,
|
| 24 |
+
SEP='\n',
|
| 25 |
+
STOP_WORDS=['<|im_end|>']),
|
| 26 |
+
moss_sft=dict(
|
| 27 |
+
SYSTEM='{system}\n',
|
| 28 |
+
INSTRUCTION='<|Human|>: {input}<eoh>\n',
|
| 29 |
+
SEP='\n',
|
| 30 |
+
STOP_WORDS=['<eoc>', '<eom>']),
|
| 31 |
+
llama2_chat=dict(
|
| 32 |
+
SYSTEM=(
|
| 33 |
+
'[INST] <<SYS>>\n You are a helpful, respectful and honest '
|
| 34 |
+
'assistant. Always answer as helpfully as possible, while being '
|
| 35 |
+
'safe. Your answers should not include any harmful, unethical, '
|
| 36 |
+
'racist, sexist, toxic, dangerous, or illegal content. Please '
|
| 37 |
+
'ensure that your responses are socially unbiased and positive in '
|
| 38 |
+
'nature.\n{system}\n<</SYS>>\n [/INST] '),
|
| 39 |
+
INSTRUCTION='[INST] {input} [/INST]',
|
| 40 |
+
SEP='\n'),
|
| 41 |
+
code_llama_chat=dict(
|
| 42 |
+
SYSTEM='{system}\n', INSTRUCTION='[INST] {input} [/INST]'),
|
| 43 |
+
chatglm2=dict(
|
| 44 |
+
SYSTEM='{system}\n',
|
| 45 |
+
INSTRUCTION='[Round {round}]\n\n问:{input}\n\n答:',
|
| 46 |
+
SEP='\n\n'),
|
| 47 |
+
chatglm3=dict(
|
| 48 |
+
SYSTEM='<|system|>\n{system}',
|
| 49 |
+
INSTRUCTION='<|user|>\n{input}<|assistant|>\n',
|
| 50 |
+
SEP='\n'),
|
| 51 |
+
qwen_chat=dict(
|
| 52 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
| 53 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
| 54 |
+
'<|im_start|>assistant\n'),
|
| 55 |
+
SUFFIX='<|im_end|>',
|
| 56 |
+
SUFFIX_AS_EOS=True,
|
| 57 |
+
SEP='\n',
|
| 58 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
| 59 |
+
baichuan_chat=dict(
|
| 60 |
+
SYSTEM='{system}\n',
|
| 61 |
+
INSTRUCTION='<reserved_102>{input}<reserved_103>',
|
| 62 |
+
SEP='\n'),
|
| 63 |
+
baichuan2_chat=dict(
|
| 64 |
+
SYSTEM='{system}\n',
|
| 65 |
+
INSTRUCTION='<reserved_106>{input}<reserved_107>',
|
| 66 |
+
SEP='\n'),
|
| 67 |
+
wizardlm=dict(
|
| 68 |
+
SYSTEM=('A chat between a curious user and an artificial '
|
| 69 |
+
'intelligence assistant. The assistant gives '
|
| 70 |
+
'helpful, detailed, and polite answers to the '
|
| 71 |
+
'user\'s questions. {system}\n '),
|
| 72 |
+
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
| 73 |
+
SEP='\n'),
|
| 74 |
+
wizardcoder=dict(
|
| 75 |
+
SYSTEM=(
|
| 76 |
+
'Below is an instruction that describes a task. '
|
| 77 |
+
'Write a response that appropriately completes the request.\n\n'
|
| 78 |
+
'{system}\n '),
|
| 79 |
+
INSTRUCTION=('### Instruction:\n{input}\n\n### Response:'),
|
| 80 |
+
SEP='\n\n'),
|
| 81 |
+
vicuna=dict(
|
| 82 |
+
SYSTEM=('A chat between a curious user and an artificial '
|
| 83 |
+
'intelligence assistant. The assistant gives '
|
| 84 |
+
'helpful, detailed, and polite answers to the '
|
| 85 |
+
'user\'s questions. {system}\n '),
|
| 86 |
+
INSTRUCTION=('USER: {input} ASSISTANT:'),
|
| 87 |
+
SEP='\n'),
|
| 88 |
+
deepseek_coder=dict(
|
| 89 |
+
SYSTEM=('You are an AI programming assistant, utilizing '
|
| 90 |
+
'the DeepSeek Coder model, developed by DeepSeek'
|
| 91 |
+
'Company, and you only answer questions related '
|
| 92 |
+
'to computer science. For politically sensitive '
|
| 93 |
+
'questions, security and privacy issues, and '
|
| 94 |
+
'other non-computer science questions, you will '
|
| 95 |
+
'refuse to answer. {system}\n'),
|
| 96 |
+
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
| 97 |
+
SEP='\n'),
|
| 98 |
+
# TODO: deprecation, v0.2.0
|
| 99 |
+
deepseekcoder=dict(
|
| 100 |
+
SYSTEM=('You are an AI programming assistant, utilizing '
|
| 101 |
+
'the DeepSeek Coder model, developed by DeepSeek'
|
| 102 |
+
'Company, and you only answer questions related '
|
| 103 |
+
'to computer science. For politically sensitive '
|
| 104 |
+
'questions, security and privacy issues, and '
|
| 105 |
+
'other non-computer science questions, you will '
|
| 106 |
+
'refuse to answer. {system}\n'),
|
| 107 |
+
INSTRUCTION=('### Instruction:\n{input}\n### Response:\n'),
|
| 108 |
+
SEP='\n'),
|
| 109 |
+
deepseek_moe=dict(
|
| 110 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
| 111 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
| 112 |
+
SEP='\n'),
|
| 113 |
+
deepseek_v2=dict(
|
| 114 |
+
SYSTEM='{system}\n\n',
|
| 115 |
+
INSTRUCTION='User: {input}\n\nAssistant: ',
|
| 116 |
+
SUFFIX='<|end▁of▁sentence|>',
|
| 117 |
+
SUFFIX_AS_EOS=True,
|
| 118 |
+
STOP_WORDS=['<|end▁of▁sentence|>']),
|
| 119 |
+
mistral=dict(
|
| 120 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
| 121 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
| 122 |
+
SEP='\n'),
|
| 123 |
+
mixtral=dict(
|
| 124 |
+
SYSTEM=('[INST] {system} [/INST]\n'),
|
| 125 |
+
INSTRUCTION=('[INST] {input} [/INST]'),
|
| 126 |
+
SEP='\n'),
|
| 127 |
+
minicpm=dict(INSTRUCTION=('<用户> {input} <AI>'), SEP='\n'),
|
| 128 |
+
minicpm3=dict(
|
| 129 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
| 130 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
| 131 |
+
'<|im_start|>assistant\n'),
|
| 132 |
+
SUFFIX='<|im_end|>',
|
| 133 |
+
SUFFIX_AS_EOS=True,
|
| 134 |
+
SEP='\n',
|
| 135 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']),
|
| 136 |
+
gemma=dict(
|
| 137 |
+
# `system` field is extended by xtuner
|
| 138 |
+
SYSTEM=('<start_of_turn>system\n{system}<end_of_turn>\n'),
|
| 139 |
+
INSTRUCTION=('<start_of_turn>user\n{input}<end_of_turn>\n'
|
| 140 |
+
'<start_of_turn>model\n'),
|
| 141 |
+
SUFFIX='<end_of_turn>',
|
| 142 |
+
SUFFIX_AS_EOS=False,
|
| 143 |
+
SEP='\n',
|
| 144 |
+
STOP_WORDS=['<end_of_turn>']),
|
| 145 |
+
cohere_chat=dict(
|
| 146 |
+
SYSTEM=('<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{system}'
|
| 147 |
+
'<|END_OF_TURN_TOKEN|>'),
|
| 148 |
+
INSTRUCTION=(
|
| 149 |
+
'<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{input}<|END_OF_TURN_TOKEN|>'
|
| 150 |
+
'<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>'),
|
| 151 |
+
SUFFIX='<|END_OF_TURN_TOKEN|>',
|
| 152 |
+
SUFFIX_AS_EOS=True,
|
| 153 |
+
STOP_WORDS=['<|END_OF_TURN_TOKEN|>']),
|
| 154 |
+
llama3_chat=dict(
|
| 155 |
+
SYSTEM=('<|start_header_id|>system<|end_header_id|>\n\n'
|
| 156 |
+
'{system}<|eot_id|>'),
|
| 157 |
+
INSTRUCTION=(
|
| 158 |
+
'<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|>'
|
| 159 |
+
'<|start_header_id|>assistant<|end_header_id|>\n\n'),
|
| 160 |
+
SUFFIX='<|eot_id|>',
|
| 161 |
+
SUFFIX_AS_EOS=True,
|
| 162 |
+
STOP_WORDS=['<|eot_id|>']),
|
| 163 |
+
phi3_chat=dict(
|
| 164 |
+
SYSTEM='<|system|>\n{system}<|end|>\n',
|
| 165 |
+
INSTRUCTION='<|user|>\n{input}<|end|>\n<|assistant|>\n',
|
| 166 |
+
SUFFIX='<|end|>',
|
| 167 |
+
SUFFIX_AS_EOS=True,
|
| 168 |
+
SEP='\n',
|
| 169 |
+
STOP_WORDS=['<|end|>']),
|
| 170 |
+
)
|
tokenization_internlm2.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Tokenization classes for InternLM."""
|
| 18 |
+
import os
|
| 19 |
+
from shutil import copyfile
|
| 20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
import sentencepiece as spm
|
| 23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 24 |
+
from transformers.utils import logging
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
| 29 |
+
|
| 30 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
| 34 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
| 35 |
+
"""
|
| 36 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
vocab_file (`str`):
|
| 40 |
+
Path to the vocabulary file.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 45 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 46 |
+
_auto_class = 'AutoTokenizer'
|
| 47 |
+
|
| 48 |
+
def __init__(
|
| 49 |
+
self,
|
| 50 |
+
vocab_file,
|
| 51 |
+
unk_token='<unk>',
|
| 52 |
+
bos_token='<s>',
|
| 53 |
+
eos_token='</s>',
|
| 54 |
+
pad_token='</s>',
|
| 55 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 56 |
+
add_bos_token=True,
|
| 57 |
+
add_eos_token=False,
|
| 58 |
+
decode_with_prefix_space=False,
|
| 59 |
+
clean_up_tokenization_spaces=False,
|
| 60 |
+
**kwargs,
|
| 61 |
+
):
|
| 62 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 63 |
+
self.vocab_file = vocab_file
|
| 64 |
+
self.add_bos_token = add_bos_token
|
| 65 |
+
self.add_eos_token = add_eos_token
|
| 66 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
| 67 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 68 |
+
self.sp_model.Load(vocab_file)
|
| 69 |
+
self._no_prefix_space_tokens = None
|
| 70 |
+
super().__init__(
|
| 71 |
+
bos_token=bos_token,
|
| 72 |
+
eos_token=eos_token,
|
| 73 |
+
unk_token=unk_token,
|
| 74 |
+
pad_token=pad_token,
|
| 75 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 76 |
+
**kwargs,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def no_prefix_space_tokens(self):
|
| 81 |
+
if self._no_prefix_space_tokens is None:
|
| 82 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
| 83 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
|
| 84 |
+
return self._no_prefix_space_tokens
|
| 85 |
+
|
| 86 |
+
@property
|
| 87 |
+
def vocab_size(self):
|
| 88 |
+
"""Returns vocab size"""
|
| 89 |
+
return self.sp_model.get_piece_size()
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def bos_token_id(self) -> Optional[int]:
|
| 93 |
+
return self.sp_model.bos_id()
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def eos_token_id(self) -> Optional[int]:
|
| 97 |
+
return self.sp_model.eos_id()
|
| 98 |
+
|
| 99 |
+
def get_vocab(self):
|
| 100 |
+
"""Returns vocab as a dict"""
|
| 101 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 102 |
+
vocab.update(self.added_tokens_encoder)
|
| 103 |
+
return vocab
|
| 104 |
+
|
| 105 |
+
def _tokenize(self, text):
|
| 106 |
+
"""Returns a tokenized string."""
|
| 107 |
+
return self.sp_model.encode(text, out_type=str)
|
| 108 |
+
|
| 109 |
+
def _convert_token_to_id(self, token):
|
| 110 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 111 |
+
return self.sp_model.piece_to_id(token)
|
| 112 |
+
|
| 113 |
+
def _convert_id_to_token(self, index):
|
| 114 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 115 |
+
token = self.sp_model.IdToPiece(index)
|
| 116 |
+
return token
|
| 117 |
+
|
| 118 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
| 119 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
| 120 |
+
return ' ' + decoded
|
| 121 |
+
else:
|
| 122 |
+
return decoded
|
| 123 |
+
|
| 124 |
+
def convert_tokens_to_string(self, tokens):
|
| 125 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 126 |
+
current_sub_tokens = []
|
| 127 |
+
out_string = ''
|
| 128 |
+
prev_is_special = False
|
| 129 |
+
for token in tokens:
|
| 130 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 131 |
+
if token in self.all_special_tokens:
|
| 132 |
+
if not prev_is_special:
|
| 133 |
+
out_string += ' '
|
| 134 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 135 |
+
prev_is_special = True
|
| 136 |
+
current_sub_tokens = []
|
| 137 |
+
else:
|
| 138 |
+
current_sub_tokens.append(token)
|
| 139 |
+
prev_is_special = False
|
| 140 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 141 |
+
out_string = self.clean_up_tokenization(out_string)
|
| 142 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
| 143 |
+
return out_string[1:]
|
| 144 |
+
|
| 145 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 146 |
+
"""
|
| 147 |
+
Save the vocabulary and special tokens file to a directory.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
save_directory (`str`):
|
| 151 |
+
The directory in which to save the vocabulary.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
`Tuple(str)`: Paths to the files saved.
|
| 155 |
+
"""
|
| 156 |
+
if not os.path.isdir(save_directory):
|
| 157 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
| 158 |
+
return
|
| 159 |
+
out_vocab_file = os.path.join(
|
| 160 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 164 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 165 |
+
elif not os.path.isfile(self.vocab_file):
|
| 166 |
+
with open(out_vocab_file, 'wb') as fi:
|
| 167 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 168 |
+
fi.write(content_spiece_model)
|
| 169 |
+
|
| 170 |
+
return (out_vocab_file,)
|
| 171 |
+
|
| 172 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 173 |
+
if self.add_bos_token:
|
| 174 |
+
bos_token_ids = [self.bos_token_id]
|
| 175 |
+
else:
|
| 176 |
+
bos_token_ids = []
|
| 177 |
+
|
| 178 |
+
output = bos_token_ids + token_ids_0
|
| 179 |
+
|
| 180 |
+
if token_ids_1 is not None:
|
| 181 |
+
output = output + token_ids_1
|
| 182 |
+
|
| 183 |
+
if self.add_eos_token:
|
| 184 |
+
output = output + [self.eos_token_id]
|
| 185 |
+
|
| 186 |
+
return output
|
| 187 |
+
|
| 188 |
+
def get_special_tokens_mask(
|
| 189 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 190 |
+
) -> List[int]:
|
| 191 |
+
"""
|
| 192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
token_ids_0 (`List[int]`):
|
| 197 |
+
List of IDs.
|
| 198 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 199 |
+
Optional second list of IDs for sequence pairs.
|
| 200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 205 |
+
"""
|
| 206 |
+
if already_has_special_tokens:
|
| 207 |
+
return super().get_special_tokens_mask(
|
| 208 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if token_ids_1 is None:
|
| 212 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 213 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
| 214 |
+
|
| 215 |
+
def create_token_type_ids_from_sequences(
|
| 216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 217 |
+
) -> List[int]:
|
| 218 |
+
"""
|
| 219 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
| 220 |
+
use of token type ids, therefore a list of zeros is returned.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
token_ids_0 (`List[int]`):
|
| 224 |
+
List of IDs.
|
| 225 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 226 |
+
Optional second list of IDs for sequence pairs.
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
`List[int]`: List of zeros.
|
| 230 |
+
"""
|
| 231 |
+
eos = [self.eos_token_id]
|
| 232 |
+
|
| 233 |
+
if token_ids_1 is None:
|
| 234 |
+
return len(token_ids_0 + eos) * [0]
|
| 235 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Tokenization Fast class for InternLM."""
|
| 18 |
+
import os
|
| 19 |
+
from shutil import copyfile
|
| 20 |
+
from typing import Any, Dict, Optional, Tuple
|
| 21 |
+
|
| 22 |
+
from tokenizers import Tokenizer, decoders, normalizers, processors
|
| 23 |
+
from tokenizers.models import BPE
|
| 24 |
+
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
|
| 25 |
+
SentencePieceExtractor,
|
| 26 |
+
SpmConverter)
|
| 27 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
| 28 |
+
from transformers.utils import logging
|
| 29 |
+
|
| 30 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
| 38 |
+
class InternLM2Converter(SpmConverter):
|
| 39 |
+
handle_byte_fallback = True
|
| 40 |
+
|
| 41 |
+
def vocab(self, proto):
|
| 42 |
+
vocab = [
|
| 43 |
+
('<unk>', 0.0),
|
| 44 |
+
('<s>', 0.0),
|
| 45 |
+
('</s>', 0.0),
|
| 46 |
+
]
|
| 47 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
| 48 |
+
return vocab
|
| 49 |
+
|
| 50 |
+
def unk_id(self, proto):
|
| 51 |
+
unk_id = 0
|
| 52 |
+
return unk_id
|
| 53 |
+
|
| 54 |
+
def decoder(self, replacement, add_prefix_space):
|
| 55 |
+
return decoders.Sequence(
|
| 56 |
+
[
|
| 57 |
+
decoders.Replace('▁', ' '),
|
| 58 |
+
decoders.ByteFallback(),
|
| 59 |
+
decoders.Fuse(),
|
| 60 |
+
decoders.Strip(content=' ', left=1),
|
| 61 |
+
]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def tokenizer(self, proto):
|
| 65 |
+
model_type = proto.trainer_spec.model_type
|
| 66 |
+
vocab_scores = self.vocab(proto)
|
| 67 |
+
# special tokens
|
| 68 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
| 69 |
+
for i in range(len(vocab_scores)):
|
| 70 |
+
piece, score = vocab_scores[i]
|
| 71 |
+
if i in added_tokens:
|
| 72 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
| 73 |
+
if model_type == 1:
|
| 74 |
+
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
|
| 75 |
+
|
| 76 |
+
elif model_type == 2:
|
| 77 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
| 78 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
| 79 |
+
tokenizer = Tokenizer(
|
| 80 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
| 81 |
+
)
|
| 82 |
+
tokenizer.add_special_tokens(
|
| 83 |
+
[ added_token for index, added_token in added_tokens.items()]
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
raise Exception(
|
| 87 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return tokenizer
|
| 91 |
+
|
| 92 |
+
def normalizer(self, proto):
|
| 93 |
+
normalizers_list = []
|
| 94 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
| 95 |
+
normalizers_list.append(normalizers.Prepend(prepend='▁'))
|
| 96 |
+
normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
|
| 97 |
+
return normalizers.Sequence(normalizers_list)
|
| 98 |
+
|
| 99 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
| 107 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
| 108 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 109 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
| 110 |
+
padding_side = 'left'
|
| 111 |
+
model_input_names = ['input_ids', 'attention_mask']
|
| 112 |
+
_auto_class = 'AutoTokenizer'
|
| 113 |
+
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
vocab_file,
|
| 117 |
+
unk_token='<unk>',
|
| 118 |
+
bos_token='<s>',
|
| 119 |
+
eos_token='</s>',
|
| 120 |
+
pad_token='</s>',
|
| 121 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 122 |
+
add_bos_token=True,
|
| 123 |
+
add_eos_token=False,
|
| 124 |
+
decode_with_prefix_space=False,
|
| 125 |
+
clean_up_tokenization_spaces=False,
|
| 126 |
+
**kwargs,
|
| 127 |
+
):
|
| 128 |
+
super().__init__(
|
| 129 |
+
vocab_file=vocab_file,
|
| 130 |
+
unk_token=unk_token,
|
| 131 |
+
bos_token=bos_token,
|
| 132 |
+
eos_token=eos_token,
|
| 133 |
+
pad_token=pad_token,
|
| 134 |
+
sp_model_kwargs=sp_model_kwargs,
|
| 135 |
+
add_bos_token=add_bos_token,
|
| 136 |
+
add_eos_token=add_eos_token,
|
| 137 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
| 138 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 139 |
+
**kwargs,
|
| 140 |
+
)
|
| 141 |
+
self._add_bos_token = add_bos_token
|
| 142 |
+
self._add_eos_token = add_eos_token
|
| 143 |
+
self.update_post_processor()
|
| 144 |
+
self.vocab_file = vocab_file
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def can_save_slow_tokenizer(self) -> bool:
|
| 148 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
| 149 |
+
|
| 150 |
+
def update_post_processor(self):
|
| 151 |
+
"""
|
| 152 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
| 153 |
+
"""
|
| 154 |
+
bos = self.bos_token
|
| 155 |
+
bos_token_id = self.bos_token_id
|
| 156 |
+
if bos is None and self.add_bos_token:
|
| 157 |
+
raise ValueError('add_bos_token = True but bos_token = None')
|
| 158 |
+
|
| 159 |
+
eos = self.eos_token
|
| 160 |
+
eos_token_id = self.eos_token_id
|
| 161 |
+
if eos is None and self.add_eos_token:
|
| 162 |
+
raise ValueError('add_eos_token = True but eos_token = None')
|
| 163 |
+
|
| 164 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
| 165 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
| 166 |
+
|
| 167 |
+
special_tokens = []
|
| 168 |
+
if self.add_bos_token:
|
| 169 |
+
special_tokens.append((bos, bos_token_id))
|
| 170 |
+
if self.add_eos_token:
|
| 171 |
+
special_tokens.append((eos, eos_token_id))
|
| 172 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
| 173 |
+
single=single, pair=pair, special_tokens=special_tokens
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
@property
|
| 177 |
+
def add_eos_token(self):
|
| 178 |
+
return self._add_eos_token
|
| 179 |
+
|
| 180 |
+
@property
|
| 181 |
+
def add_bos_token(self):
|
| 182 |
+
return self._add_bos_token
|
| 183 |
+
|
| 184 |
+
@add_eos_token.setter
|
| 185 |
+
def add_eos_token(self, value):
|
| 186 |
+
self._add_eos_token = value
|
| 187 |
+
self.update_post_processor()
|
| 188 |
+
|
| 189 |
+
@add_bos_token.setter
|
| 190 |
+
def add_bos_token(self, value):
|
| 191 |
+
self._add_bos_token = value
|
| 192 |
+
self.update_post_processor()
|
| 193 |
+
|
| 194 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 195 |
+
if not self.can_save_slow_tokenizer:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
|
| 198 |
+
'tokenizer.'
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
if not os.path.isdir(save_directory):
|
| 202 |
+
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
|
| 203 |
+
return
|
| 204 |
+
out_vocab_file = os.path.join(
|
| 205 |
+
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
| 209 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 210 |
+
|
| 211 |
+
return (out_vocab_file,)
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d257d75be50ec94137a76982b1ba699695a69d25a660733e8d0e2073bf50328b
|
| 3 |
+
size 11443325
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,1147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"151643": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"151644": {
|
| 15 |
+
"content": "<|im_start|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"151645": {
|
| 23 |
+
"content": "<|im_end|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"151646": {
|
| 31 |
+
"content": "<|object_ref_start|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"151647": {
|
| 39 |
+
"content": "<|object_ref_end|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"151648": {
|
| 47 |
+
"content": "<|box_start|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"151649": {
|
| 55 |
+
"content": "<|box_end|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"151650": {
|
| 63 |
+
"content": "<|quad_start|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"151651": {
|
| 71 |
+
"content": "<|quad_end|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"151652": {
|
| 79 |
+
"content": "<|vision_start|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"151653": {
|
| 87 |
+
"content": "<|vision_end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"151654": {
|
| 95 |
+
"content": "<|vision_pad|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"151655": {
|
| 103 |
+
"content": "<|image_pad|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"151656": {
|
| 111 |
+
"content": "<|video_pad|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"151657": {
|
| 119 |
+
"content": "<tool_call>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"151658": {
|
| 127 |
+
"content": "</tool_call>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"151659": {
|
| 135 |
+
"content": "<|fim_prefix|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"151660": {
|
| 143 |
+
"content": "<|fim_middle|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"151661": {
|
| 151 |
+
"content": "<|fim_suffix|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"151662": {
|
| 159 |
+
"content": "<|fim_pad|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"151663": {
|
| 167 |
+
"content": "<|repo_name|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"151664": {
|
| 175 |
+
"content": "<|file_sep|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"151665": {
|
| 183 |
+
"content": "<img>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"151666": {
|
| 191 |
+
"content": "</img>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
},
|
| 198 |
+
"151667": {
|
| 199 |
+
"content": "<IMG_CONTEXT>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": true
|
| 205 |
+
},
|
| 206 |
+
"151668": {
|
| 207 |
+
"content": "<quad>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": true
|
| 213 |
+
},
|
| 214 |
+
"151669": {
|
| 215 |
+
"content": "</quad>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"151670": {
|
| 223 |
+
"content": "<ref>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"151671": {
|
| 231 |
+
"content": "</ref>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"151672": {
|
| 239 |
+
"content": "<box>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"151673": {
|
| 247 |
+
"content": "</box>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
},
|
| 254 |
+
"151674": {
|
| 255 |
+
"content": "<p>",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": true
|
| 261 |
+
},
|
| 262 |
+
"151675": {
|
| 263 |
+
"content": "</p>",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": true
|
| 269 |
+
},
|
| 270 |
+
"151676": {
|
| 271 |
+
"content": "[CLS]",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": true
|
| 277 |
+
},
|
| 278 |
+
"151677": {
|
| 279 |
+
"content": "[BG_CLS]",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": true
|
| 285 |
+
},
|
| 286 |
+
"151678": {
|
| 287 |
+
"content": "<obj>",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": true
|
| 293 |
+
},
|
| 294 |
+
"151679": {
|
| 295 |
+
"content": "</obj>",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": true
|
| 301 |
+
},
|
| 302 |
+
"151680": {
|
| 303 |
+
"content": "<OBJ_CONTEXT>",
|
| 304 |
+
"lstrip": false,
|
| 305 |
+
"normalized": false,
|
| 306 |
+
"rstrip": false,
|
| 307 |
+
"single_word": false,
|
| 308 |
+
"special": true
|
| 309 |
+
},
|
| 310 |
+
"151681": {
|
| 311 |
+
"content": "[SEG000]",
|
| 312 |
+
"lstrip": false,
|
| 313 |
+
"normalized": false,
|
| 314 |
+
"rstrip": false,
|
| 315 |
+
"single_word": false,
|
| 316 |
+
"special": true
|
| 317 |
+
},
|
| 318 |
+
"151682": {
|
| 319 |
+
"content": "[SEG001]",
|
| 320 |
+
"lstrip": false,
|
| 321 |
+
"normalized": false,
|
| 322 |
+
"rstrip": false,
|
| 323 |
+
"single_word": false,
|
| 324 |
+
"special": true
|
| 325 |
+
},
|
| 326 |
+
"151683": {
|
| 327 |
+
"content": "[SEG002]",
|
| 328 |
+
"lstrip": false,
|
| 329 |
+
"normalized": false,
|
| 330 |
+
"rstrip": false,
|
| 331 |
+
"single_word": false,
|
| 332 |
+
"special": true
|
| 333 |
+
},
|
| 334 |
+
"151684": {
|
| 335 |
+
"content": "[SEG003]",
|
| 336 |
+
"lstrip": false,
|
| 337 |
+
"normalized": false,
|
| 338 |
+
"rstrip": false,
|
| 339 |
+
"single_word": false,
|
| 340 |
+
"special": true
|
| 341 |
+
},
|
| 342 |
+
"151685": {
|
| 343 |
+
"content": "[SEG004]",
|
| 344 |
+
"lstrip": false,
|
| 345 |
+
"normalized": false,
|
| 346 |
+
"rstrip": false,
|
| 347 |
+
"single_word": false,
|
| 348 |
+
"special": true
|
| 349 |
+
},
|
| 350 |
+
"151686": {
|
| 351 |
+
"content": "[SEG005]",
|
| 352 |
+
"lstrip": false,
|
| 353 |
+
"normalized": false,
|
| 354 |
+
"rstrip": false,
|
| 355 |
+
"single_word": false,
|
| 356 |
+
"special": true
|
| 357 |
+
},
|
| 358 |
+
"151687": {
|
| 359 |
+
"content": "[SEG006]",
|
| 360 |
+
"lstrip": false,
|
| 361 |
+
"normalized": false,
|
| 362 |
+
"rstrip": false,
|
| 363 |
+
"single_word": false,
|
| 364 |
+
"special": true
|
| 365 |
+
},
|
| 366 |
+
"151688": {
|
| 367 |
+
"content": "[SEG007]",
|
| 368 |
+
"lstrip": false,
|
| 369 |
+
"normalized": false,
|
| 370 |
+
"rstrip": false,
|
| 371 |
+
"single_word": false,
|
| 372 |
+
"special": true
|
| 373 |
+
},
|
| 374 |
+
"151689": {
|
| 375 |
+
"content": "[SEG008]",
|
| 376 |
+
"lstrip": false,
|
| 377 |
+
"normalized": false,
|
| 378 |
+
"rstrip": false,
|
| 379 |
+
"single_word": false,
|
| 380 |
+
"special": true
|
| 381 |
+
},
|
| 382 |
+
"151690": {
|
| 383 |
+
"content": "[SEG009]",
|
| 384 |
+
"lstrip": false,
|
| 385 |
+
"normalized": false,
|
| 386 |
+
"rstrip": false,
|
| 387 |
+
"single_word": false,
|
| 388 |
+
"special": true
|
| 389 |
+
},
|
| 390 |
+
"151691": {
|
| 391 |
+
"content": "[SEG010]",
|
| 392 |
+
"lstrip": false,
|
| 393 |
+
"normalized": false,
|
| 394 |
+
"rstrip": false,
|
| 395 |
+
"single_word": false,
|
| 396 |
+
"special": true
|
| 397 |
+
},
|
| 398 |
+
"151692": {
|
| 399 |
+
"content": "[SEG011]",
|
| 400 |
+
"lstrip": false,
|
| 401 |
+
"normalized": false,
|
| 402 |
+
"rstrip": false,
|
| 403 |
+
"single_word": false,
|
| 404 |
+
"special": true
|
| 405 |
+
},
|
| 406 |
+
"151693": {
|
| 407 |
+
"content": "[SEG012]",
|
| 408 |
+
"lstrip": false,
|
| 409 |
+
"normalized": false,
|
| 410 |
+
"rstrip": false,
|
| 411 |
+
"single_word": false,
|
| 412 |
+
"special": true
|
| 413 |
+
},
|
| 414 |
+
"151694": {
|
| 415 |
+
"content": "[SEG013]",
|
| 416 |
+
"lstrip": false,
|
| 417 |
+
"normalized": false,
|
| 418 |
+
"rstrip": false,
|
| 419 |
+
"single_word": false,
|
| 420 |
+
"special": true
|
| 421 |
+
},
|
| 422 |
+
"151695": {
|
| 423 |
+
"content": "[SEG014]",
|
| 424 |
+
"lstrip": false,
|
| 425 |
+
"normalized": false,
|
| 426 |
+
"rstrip": false,
|
| 427 |
+
"single_word": false,
|
| 428 |
+
"special": true
|
| 429 |
+
},
|
| 430 |
+
"151696": {
|
| 431 |
+
"content": "[SEG015]",
|
| 432 |
+
"lstrip": false,
|
| 433 |
+
"normalized": false,
|
| 434 |
+
"rstrip": false,
|
| 435 |
+
"single_word": false,
|
| 436 |
+
"special": true
|
| 437 |
+
},
|
| 438 |
+
"151697": {
|
| 439 |
+
"content": "[SEG016]",
|
| 440 |
+
"lstrip": false,
|
| 441 |
+
"normalized": false,
|
| 442 |
+
"rstrip": false,
|
| 443 |
+
"single_word": false,
|
| 444 |
+
"special": true
|
| 445 |
+
},
|
| 446 |
+
"151698": {
|
| 447 |
+
"content": "[SEG017]",
|
| 448 |
+
"lstrip": false,
|
| 449 |
+
"normalized": false,
|
| 450 |
+
"rstrip": false,
|
| 451 |
+
"single_word": false,
|
| 452 |
+
"special": true
|
| 453 |
+
},
|
| 454 |
+
"151699": {
|
| 455 |
+
"content": "[SEG018]",
|
| 456 |
+
"lstrip": false,
|
| 457 |
+
"normalized": false,
|
| 458 |
+
"rstrip": false,
|
| 459 |
+
"single_word": false,
|
| 460 |
+
"special": true
|
| 461 |
+
},
|
| 462 |
+
"151700": {
|
| 463 |
+
"content": "[SEG019]",
|
| 464 |
+
"lstrip": false,
|
| 465 |
+
"normalized": false,
|
| 466 |
+
"rstrip": false,
|
| 467 |
+
"single_word": false,
|
| 468 |
+
"special": true
|
| 469 |
+
},
|
| 470 |
+
"151701": {
|
| 471 |
+
"content": "[SEG020]",
|
| 472 |
+
"lstrip": false,
|
| 473 |
+
"normalized": false,
|
| 474 |
+
"rstrip": false,
|
| 475 |
+
"single_word": false,
|
| 476 |
+
"special": true
|
| 477 |
+
},
|
| 478 |
+
"151702": {
|
| 479 |
+
"content": "[SEG021]",
|
| 480 |
+
"lstrip": false,
|
| 481 |
+
"normalized": false,
|
| 482 |
+
"rstrip": false,
|
| 483 |
+
"single_word": false,
|
| 484 |
+
"special": true
|
| 485 |
+
},
|
| 486 |
+
"151703": {
|
| 487 |
+
"content": "[SEG022]",
|
| 488 |
+
"lstrip": false,
|
| 489 |
+
"normalized": false,
|
| 490 |
+
"rstrip": false,
|
| 491 |
+
"single_word": false,
|
| 492 |
+
"special": true
|
| 493 |
+
},
|
| 494 |
+
"151704": {
|
| 495 |
+
"content": "[SEG023]",
|
| 496 |
+
"lstrip": false,
|
| 497 |
+
"normalized": false,
|
| 498 |
+
"rstrip": false,
|
| 499 |
+
"single_word": false,
|
| 500 |
+
"special": true
|
| 501 |
+
},
|
| 502 |
+
"151705": {
|
| 503 |
+
"content": "[SEG024]",
|
| 504 |
+
"lstrip": false,
|
| 505 |
+
"normalized": false,
|
| 506 |
+
"rstrip": false,
|
| 507 |
+
"single_word": false,
|
| 508 |
+
"special": true
|
| 509 |
+
},
|
| 510 |
+
"151706": {
|
| 511 |
+
"content": "[SEG025]",
|
| 512 |
+
"lstrip": false,
|
| 513 |
+
"normalized": false,
|
| 514 |
+
"rstrip": false,
|
| 515 |
+
"single_word": false,
|
| 516 |
+
"special": true
|
| 517 |
+
},
|
| 518 |
+
"151707": {
|
| 519 |
+
"content": "[SEG026]",
|
| 520 |
+
"lstrip": false,
|
| 521 |
+
"normalized": false,
|
| 522 |
+
"rstrip": false,
|
| 523 |
+
"single_word": false,
|
| 524 |
+
"special": true
|
| 525 |
+
},
|
| 526 |
+
"151708": {
|
| 527 |
+
"content": "[SEG027]",
|
| 528 |
+
"lstrip": false,
|
| 529 |
+
"normalized": false,
|
| 530 |
+
"rstrip": false,
|
| 531 |
+
"single_word": false,
|
| 532 |
+
"special": true
|
| 533 |
+
},
|
| 534 |
+
"151709": {
|
| 535 |
+
"content": "[SEG028]",
|
| 536 |
+
"lstrip": false,
|
| 537 |
+
"normalized": false,
|
| 538 |
+
"rstrip": false,
|
| 539 |
+
"single_word": false,
|
| 540 |
+
"special": true
|
| 541 |
+
},
|
| 542 |
+
"151710": {
|
| 543 |
+
"content": "[SEG029]",
|
| 544 |
+
"lstrip": false,
|
| 545 |
+
"normalized": false,
|
| 546 |
+
"rstrip": false,
|
| 547 |
+
"single_word": false,
|
| 548 |
+
"special": true
|
| 549 |
+
},
|
| 550 |
+
"151711": {
|
| 551 |
+
"content": "[SEG030]",
|
| 552 |
+
"lstrip": false,
|
| 553 |
+
"normalized": false,
|
| 554 |
+
"rstrip": false,
|
| 555 |
+
"single_word": false,
|
| 556 |
+
"special": true
|
| 557 |
+
},
|
| 558 |
+
"151712": {
|
| 559 |
+
"content": "[SEG031]",
|
| 560 |
+
"lstrip": false,
|
| 561 |
+
"normalized": false,
|
| 562 |
+
"rstrip": false,
|
| 563 |
+
"single_word": false,
|
| 564 |
+
"special": true
|
| 565 |
+
},
|
| 566 |
+
"151713": {
|
| 567 |
+
"content": "[SEG032]",
|
| 568 |
+
"lstrip": false,
|
| 569 |
+
"normalized": false,
|
| 570 |
+
"rstrip": false,
|
| 571 |
+
"single_word": false,
|
| 572 |
+
"special": true
|
| 573 |
+
},
|
| 574 |
+
"151714": {
|
| 575 |
+
"content": "[SEG033]",
|
| 576 |
+
"lstrip": false,
|
| 577 |
+
"normalized": false,
|
| 578 |
+
"rstrip": false,
|
| 579 |
+
"single_word": false,
|
| 580 |
+
"special": true
|
| 581 |
+
},
|
| 582 |
+
"151715": {
|
| 583 |
+
"content": "[SEG034]",
|
| 584 |
+
"lstrip": false,
|
| 585 |
+
"normalized": false,
|
| 586 |
+
"rstrip": false,
|
| 587 |
+
"single_word": false,
|
| 588 |
+
"special": true
|
| 589 |
+
},
|
| 590 |
+
"151716": {
|
| 591 |
+
"content": "[SEG035]",
|
| 592 |
+
"lstrip": false,
|
| 593 |
+
"normalized": false,
|
| 594 |
+
"rstrip": false,
|
| 595 |
+
"single_word": false,
|
| 596 |
+
"special": true
|
| 597 |
+
},
|
| 598 |
+
"151717": {
|
| 599 |
+
"content": "[SEG036]",
|
| 600 |
+
"lstrip": false,
|
| 601 |
+
"normalized": false,
|
| 602 |
+
"rstrip": false,
|
| 603 |
+
"single_word": false,
|
| 604 |
+
"special": true
|
| 605 |
+
},
|
| 606 |
+
"151718": {
|
| 607 |
+
"content": "[SEG037]",
|
| 608 |
+
"lstrip": false,
|
| 609 |
+
"normalized": false,
|
| 610 |
+
"rstrip": false,
|
| 611 |
+
"single_word": false,
|
| 612 |
+
"special": true
|
| 613 |
+
},
|
| 614 |
+
"151719": {
|
| 615 |
+
"content": "[SEG038]",
|
| 616 |
+
"lstrip": false,
|
| 617 |
+
"normalized": false,
|
| 618 |
+
"rstrip": false,
|
| 619 |
+
"single_word": false,
|
| 620 |
+
"special": true
|
| 621 |
+
},
|
| 622 |
+
"151720": {
|
| 623 |
+
"content": "[SEG039]",
|
| 624 |
+
"lstrip": false,
|
| 625 |
+
"normalized": false,
|
| 626 |
+
"rstrip": false,
|
| 627 |
+
"single_word": false,
|
| 628 |
+
"special": true
|
| 629 |
+
},
|
| 630 |
+
"151721": {
|
| 631 |
+
"content": "[SEG040]",
|
| 632 |
+
"lstrip": false,
|
| 633 |
+
"normalized": false,
|
| 634 |
+
"rstrip": false,
|
| 635 |
+
"single_word": false,
|
| 636 |
+
"special": true
|
| 637 |
+
},
|
| 638 |
+
"151722": {
|
| 639 |
+
"content": "[SEG041]",
|
| 640 |
+
"lstrip": false,
|
| 641 |
+
"normalized": false,
|
| 642 |
+
"rstrip": false,
|
| 643 |
+
"single_word": false,
|
| 644 |
+
"special": true
|
| 645 |
+
},
|
| 646 |
+
"151723": {
|
| 647 |
+
"content": "[SEG042]",
|
| 648 |
+
"lstrip": false,
|
| 649 |
+
"normalized": false,
|
| 650 |
+
"rstrip": false,
|
| 651 |
+
"single_word": false,
|
| 652 |
+
"special": true
|
| 653 |
+
},
|
| 654 |
+
"151724": {
|
| 655 |
+
"content": "[SEG043]",
|
| 656 |
+
"lstrip": false,
|
| 657 |
+
"normalized": false,
|
| 658 |
+
"rstrip": false,
|
| 659 |
+
"single_word": false,
|
| 660 |
+
"special": true
|
| 661 |
+
},
|
| 662 |
+
"151725": {
|
| 663 |
+
"content": "[SEG044]",
|
| 664 |
+
"lstrip": false,
|
| 665 |
+
"normalized": false,
|
| 666 |
+
"rstrip": false,
|
| 667 |
+
"single_word": false,
|
| 668 |
+
"special": true
|
| 669 |
+
},
|
| 670 |
+
"151726": {
|
| 671 |
+
"content": "[SEG045]",
|
| 672 |
+
"lstrip": false,
|
| 673 |
+
"normalized": false,
|
| 674 |
+
"rstrip": false,
|
| 675 |
+
"single_word": false,
|
| 676 |
+
"special": true
|
| 677 |
+
},
|
| 678 |
+
"151727": {
|
| 679 |
+
"content": "[SEG046]",
|
| 680 |
+
"lstrip": false,
|
| 681 |
+
"normalized": false,
|
| 682 |
+
"rstrip": false,
|
| 683 |
+
"single_word": false,
|
| 684 |
+
"special": true
|
| 685 |
+
},
|
| 686 |
+
"151728": {
|
| 687 |
+
"content": "[SEG047]",
|
| 688 |
+
"lstrip": false,
|
| 689 |
+
"normalized": false,
|
| 690 |
+
"rstrip": false,
|
| 691 |
+
"single_word": false,
|
| 692 |
+
"special": true
|
| 693 |
+
},
|
| 694 |
+
"151729": {
|
| 695 |
+
"content": "[SEG048]",
|
| 696 |
+
"lstrip": false,
|
| 697 |
+
"normalized": false,
|
| 698 |
+
"rstrip": false,
|
| 699 |
+
"single_word": false,
|
| 700 |
+
"special": true
|
| 701 |
+
},
|
| 702 |
+
"151730": {
|
| 703 |
+
"content": "[SEG049]",
|
| 704 |
+
"lstrip": false,
|
| 705 |
+
"normalized": false,
|
| 706 |
+
"rstrip": false,
|
| 707 |
+
"single_word": false,
|
| 708 |
+
"special": true
|
| 709 |
+
},
|
| 710 |
+
"151731": {
|
| 711 |
+
"content": "[SEG050]",
|
| 712 |
+
"lstrip": false,
|
| 713 |
+
"normalized": false,
|
| 714 |
+
"rstrip": false,
|
| 715 |
+
"single_word": false,
|
| 716 |
+
"special": true
|
| 717 |
+
},
|
| 718 |
+
"151732": {
|
| 719 |
+
"content": "[SEG051]",
|
| 720 |
+
"lstrip": false,
|
| 721 |
+
"normalized": false,
|
| 722 |
+
"rstrip": false,
|
| 723 |
+
"single_word": false,
|
| 724 |
+
"special": true
|
| 725 |
+
},
|
| 726 |
+
"151733": {
|
| 727 |
+
"content": "[SEG052]",
|
| 728 |
+
"lstrip": false,
|
| 729 |
+
"normalized": false,
|
| 730 |
+
"rstrip": false,
|
| 731 |
+
"single_word": false,
|
| 732 |
+
"special": true
|
| 733 |
+
},
|
| 734 |
+
"151734": {
|
| 735 |
+
"content": "[SEG053]",
|
| 736 |
+
"lstrip": false,
|
| 737 |
+
"normalized": false,
|
| 738 |
+
"rstrip": false,
|
| 739 |
+
"single_word": false,
|
| 740 |
+
"special": true
|
| 741 |
+
},
|
| 742 |
+
"151735": {
|
| 743 |
+
"content": "[SEG054]",
|
| 744 |
+
"lstrip": false,
|
| 745 |
+
"normalized": false,
|
| 746 |
+
"rstrip": false,
|
| 747 |
+
"single_word": false,
|
| 748 |
+
"special": true
|
| 749 |
+
},
|
| 750 |
+
"151736": {
|
| 751 |
+
"content": "[SEG055]",
|
| 752 |
+
"lstrip": false,
|
| 753 |
+
"normalized": false,
|
| 754 |
+
"rstrip": false,
|
| 755 |
+
"single_word": false,
|
| 756 |
+
"special": true
|
| 757 |
+
},
|
| 758 |
+
"151737": {
|
| 759 |
+
"content": "[SEG056]",
|
| 760 |
+
"lstrip": false,
|
| 761 |
+
"normalized": false,
|
| 762 |
+
"rstrip": false,
|
| 763 |
+
"single_word": false,
|
| 764 |
+
"special": true
|
| 765 |
+
},
|
| 766 |
+
"151738": {
|
| 767 |
+
"content": "[SEG057]",
|
| 768 |
+
"lstrip": false,
|
| 769 |
+
"normalized": false,
|
| 770 |
+
"rstrip": false,
|
| 771 |
+
"single_word": false,
|
| 772 |
+
"special": true
|
| 773 |
+
},
|
| 774 |
+
"151739": {
|
| 775 |
+
"content": "[SEG058]",
|
| 776 |
+
"lstrip": false,
|
| 777 |
+
"normalized": false,
|
| 778 |
+
"rstrip": false,
|
| 779 |
+
"single_word": false,
|
| 780 |
+
"special": true
|
| 781 |
+
},
|
| 782 |
+
"151740": {
|
| 783 |
+
"content": "[SEG059]",
|
| 784 |
+
"lstrip": false,
|
| 785 |
+
"normalized": false,
|
| 786 |
+
"rstrip": false,
|
| 787 |
+
"single_word": false,
|
| 788 |
+
"special": true
|
| 789 |
+
},
|
| 790 |
+
"151741": {
|
| 791 |
+
"content": "[SEG060]",
|
| 792 |
+
"lstrip": false,
|
| 793 |
+
"normalized": false,
|
| 794 |
+
"rstrip": false,
|
| 795 |
+
"single_word": false,
|
| 796 |
+
"special": true
|
| 797 |
+
},
|
| 798 |
+
"151742": {
|
| 799 |
+
"content": "[SEG061]",
|
| 800 |
+
"lstrip": false,
|
| 801 |
+
"normalized": false,
|
| 802 |
+
"rstrip": false,
|
| 803 |
+
"single_word": false,
|
| 804 |
+
"special": true
|
| 805 |
+
},
|
| 806 |
+
"151743": {
|
| 807 |
+
"content": "[SEG062]",
|
| 808 |
+
"lstrip": false,
|
| 809 |
+
"normalized": false,
|
| 810 |
+
"rstrip": false,
|
| 811 |
+
"single_word": false,
|
| 812 |
+
"special": true
|
| 813 |
+
},
|
| 814 |
+
"151744": {
|
| 815 |
+
"content": "[SEG063]",
|
| 816 |
+
"lstrip": false,
|
| 817 |
+
"normalized": false,
|
| 818 |
+
"rstrip": false,
|
| 819 |
+
"single_word": false,
|
| 820 |
+
"special": true
|
| 821 |
+
},
|
| 822 |
+
"151745": {
|
| 823 |
+
"content": "[SEG064]",
|
| 824 |
+
"lstrip": false,
|
| 825 |
+
"normalized": false,
|
| 826 |
+
"rstrip": false,
|
| 827 |
+
"single_word": false,
|
| 828 |
+
"special": true
|
| 829 |
+
},
|
| 830 |
+
"151746": {
|
| 831 |
+
"content": "[SEG065]",
|
| 832 |
+
"lstrip": false,
|
| 833 |
+
"normalized": false,
|
| 834 |
+
"rstrip": false,
|
| 835 |
+
"single_word": false,
|
| 836 |
+
"special": true
|
| 837 |
+
},
|
| 838 |
+
"151747": {
|
| 839 |
+
"content": "[SEG066]",
|
| 840 |
+
"lstrip": false,
|
| 841 |
+
"normalized": false,
|
| 842 |
+
"rstrip": false,
|
| 843 |
+
"single_word": false,
|
| 844 |
+
"special": true
|
| 845 |
+
},
|
| 846 |
+
"151748": {
|
| 847 |
+
"content": "[SEG067]",
|
| 848 |
+
"lstrip": false,
|
| 849 |
+
"normalized": false,
|
| 850 |
+
"rstrip": false,
|
| 851 |
+
"single_word": false,
|
| 852 |
+
"special": true
|
| 853 |
+
},
|
| 854 |
+
"151749": {
|
| 855 |
+
"content": "[SEG068]",
|
| 856 |
+
"lstrip": false,
|
| 857 |
+
"normalized": false,
|
| 858 |
+
"rstrip": false,
|
| 859 |
+
"single_word": false,
|
| 860 |
+
"special": true
|
| 861 |
+
},
|
| 862 |
+
"151750": {
|
| 863 |
+
"content": "[SEG069]",
|
| 864 |
+
"lstrip": false,
|
| 865 |
+
"normalized": false,
|
| 866 |
+
"rstrip": false,
|
| 867 |
+
"single_word": false,
|
| 868 |
+
"special": true
|
| 869 |
+
},
|
| 870 |
+
"151751": {
|
| 871 |
+
"content": "[SEG070]",
|
| 872 |
+
"lstrip": false,
|
| 873 |
+
"normalized": false,
|
| 874 |
+
"rstrip": false,
|
| 875 |
+
"single_word": false,
|
| 876 |
+
"special": true
|
| 877 |
+
},
|
| 878 |
+
"151752": {
|
| 879 |
+
"content": "[SEG071]",
|
| 880 |
+
"lstrip": false,
|
| 881 |
+
"normalized": false,
|
| 882 |
+
"rstrip": false,
|
| 883 |
+
"single_word": false,
|
| 884 |
+
"special": true
|
| 885 |
+
},
|
| 886 |
+
"151753": {
|
| 887 |
+
"content": "[SEG072]",
|
| 888 |
+
"lstrip": false,
|
| 889 |
+
"normalized": false,
|
| 890 |
+
"rstrip": false,
|
| 891 |
+
"single_word": false,
|
| 892 |
+
"special": true
|
| 893 |
+
},
|
| 894 |
+
"151754": {
|
| 895 |
+
"content": "[SEG073]",
|
| 896 |
+
"lstrip": false,
|
| 897 |
+
"normalized": false,
|
| 898 |
+
"rstrip": false,
|
| 899 |
+
"single_word": false,
|
| 900 |
+
"special": true
|
| 901 |
+
},
|
| 902 |
+
"151755": {
|
| 903 |
+
"content": "[SEG074]",
|
| 904 |
+
"lstrip": false,
|
| 905 |
+
"normalized": false,
|
| 906 |
+
"rstrip": false,
|
| 907 |
+
"single_word": false,
|
| 908 |
+
"special": true
|
| 909 |
+
},
|
| 910 |
+
"151756": {
|
| 911 |
+
"content": "[SEG075]",
|
| 912 |
+
"lstrip": false,
|
| 913 |
+
"normalized": false,
|
| 914 |
+
"rstrip": false,
|
| 915 |
+
"single_word": false,
|
| 916 |
+
"special": true
|
| 917 |
+
},
|
| 918 |
+
"151757": {
|
| 919 |
+
"content": "[SEG076]",
|
| 920 |
+
"lstrip": false,
|
| 921 |
+
"normalized": false,
|
| 922 |
+
"rstrip": false,
|
| 923 |
+
"single_word": false,
|
| 924 |
+
"special": true
|
| 925 |
+
},
|
| 926 |
+
"151758": {
|
| 927 |
+
"content": "[SEG077]",
|
| 928 |
+
"lstrip": false,
|
| 929 |
+
"normalized": false,
|
| 930 |
+
"rstrip": false,
|
| 931 |
+
"single_word": false,
|
| 932 |
+
"special": true
|
| 933 |
+
},
|
| 934 |
+
"151759": {
|
| 935 |
+
"content": "[SEG078]",
|
| 936 |
+
"lstrip": false,
|
| 937 |
+
"normalized": false,
|
| 938 |
+
"rstrip": false,
|
| 939 |
+
"single_word": false,
|
| 940 |
+
"special": true
|
| 941 |
+
},
|
| 942 |
+
"151760": {
|
| 943 |
+
"content": "[SEG079]",
|
| 944 |
+
"lstrip": false,
|
| 945 |
+
"normalized": false,
|
| 946 |
+
"rstrip": false,
|
| 947 |
+
"single_word": false,
|
| 948 |
+
"special": true
|
| 949 |
+
},
|
| 950 |
+
"151761": {
|
| 951 |
+
"content": "[SEG080]",
|
| 952 |
+
"lstrip": false,
|
| 953 |
+
"normalized": false,
|
| 954 |
+
"rstrip": false,
|
| 955 |
+
"single_word": false,
|
| 956 |
+
"special": true
|
| 957 |
+
},
|
| 958 |
+
"151762": {
|
| 959 |
+
"content": "[SEG081]",
|
| 960 |
+
"lstrip": false,
|
| 961 |
+
"normalized": false,
|
| 962 |
+
"rstrip": false,
|
| 963 |
+
"single_word": false,
|
| 964 |
+
"special": true
|
| 965 |
+
},
|
| 966 |
+
"151763": {
|
| 967 |
+
"content": "[SEG082]",
|
| 968 |
+
"lstrip": false,
|
| 969 |
+
"normalized": false,
|
| 970 |
+
"rstrip": false,
|
| 971 |
+
"single_word": false,
|
| 972 |
+
"special": true
|
| 973 |
+
},
|
| 974 |
+
"151764": {
|
| 975 |
+
"content": "[SEG083]",
|
| 976 |
+
"lstrip": false,
|
| 977 |
+
"normalized": false,
|
| 978 |
+
"rstrip": false,
|
| 979 |
+
"single_word": false,
|
| 980 |
+
"special": true
|
| 981 |
+
},
|
| 982 |
+
"151765": {
|
| 983 |
+
"content": "[SEG084]",
|
| 984 |
+
"lstrip": false,
|
| 985 |
+
"normalized": false,
|
| 986 |
+
"rstrip": false,
|
| 987 |
+
"single_word": false,
|
| 988 |
+
"special": true
|
| 989 |
+
},
|
| 990 |
+
"151766": {
|
| 991 |
+
"content": "[SEG085]",
|
| 992 |
+
"lstrip": false,
|
| 993 |
+
"normalized": false,
|
| 994 |
+
"rstrip": false,
|
| 995 |
+
"single_word": false,
|
| 996 |
+
"special": true
|
| 997 |
+
},
|
| 998 |
+
"151767": {
|
| 999 |
+
"content": "[SEG086]",
|
| 1000 |
+
"lstrip": false,
|
| 1001 |
+
"normalized": false,
|
| 1002 |
+
"rstrip": false,
|
| 1003 |
+
"single_word": false,
|
| 1004 |
+
"special": true
|
| 1005 |
+
},
|
| 1006 |
+
"151768": {
|
| 1007 |
+
"content": "[SEG087]",
|
| 1008 |
+
"lstrip": false,
|
| 1009 |
+
"normalized": false,
|
| 1010 |
+
"rstrip": false,
|
| 1011 |
+
"single_word": false,
|
| 1012 |
+
"special": true
|
| 1013 |
+
},
|
| 1014 |
+
"151769": {
|
| 1015 |
+
"content": "[SEG088]",
|
| 1016 |
+
"lstrip": false,
|
| 1017 |
+
"normalized": false,
|
| 1018 |
+
"rstrip": false,
|
| 1019 |
+
"single_word": false,
|
| 1020 |
+
"special": true
|
| 1021 |
+
},
|
| 1022 |
+
"151770": {
|
| 1023 |
+
"content": "[SEG089]",
|
| 1024 |
+
"lstrip": false,
|
| 1025 |
+
"normalized": false,
|
| 1026 |
+
"rstrip": false,
|
| 1027 |
+
"single_word": false,
|
| 1028 |
+
"special": true
|
| 1029 |
+
},
|
| 1030 |
+
"151771": {
|
| 1031 |
+
"content": "[SEG090]",
|
| 1032 |
+
"lstrip": false,
|
| 1033 |
+
"normalized": false,
|
| 1034 |
+
"rstrip": false,
|
| 1035 |
+
"single_word": false,
|
| 1036 |
+
"special": true
|
| 1037 |
+
},
|
| 1038 |
+
"151772": {
|
| 1039 |
+
"content": "[SEG091]",
|
| 1040 |
+
"lstrip": false,
|
| 1041 |
+
"normalized": false,
|
| 1042 |
+
"rstrip": false,
|
| 1043 |
+
"single_word": false,
|
| 1044 |
+
"special": true
|
| 1045 |
+
},
|
| 1046 |
+
"151773": {
|
| 1047 |
+
"content": "[SEG092]",
|
| 1048 |
+
"lstrip": false,
|
| 1049 |
+
"normalized": false,
|
| 1050 |
+
"rstrip": false,
|
| 1051 |
+
"single_word": false,
|
| 1052 |
+
"special": true
|
| 1053 |
+
},
|
| 1054 |
+
"151774": {
|
| 1055 |
+
"content": "[SEG093]",
|
| 1056 |
+
"lstrip": false,
|
| 1057 |
+
"normalized": false,
|
| 1058 |
+
"rstrip": false,
|
| 1059 |
+
"single_word": false,
|
| 1060 |
+
"special": true
|
| 1061 |
+
},
|
| 1062 |
+
"151775": {
|
| 1063 |
+
"content": "[SEG094]",
|
| 1064 |
+
"lstrip": false,
|
| 1065 |
+
"normalized": false,
|
| 1066 |
+
"rstrip": false,
|
| 1067 |
+
"single_word": false,
|
| 1068 |
+
"special": true
|
| 1069 |
+
},
|
| 1070 |
+
"151776": {
|
| 1071 |
+
"content": "[SEG095]",
|
| 1072 |
+
"lstrip": false,
|
| 1073 |
+
"normalized": false,
|
| 1074 |
+
"rstrip": false,
|
| 1075 |
+
"single_word": false,
|
| 1076 |
+
"special": true
|
| 1077 |
+
},
|
| 1078 |
+
"151777": {
|
| 1079 |
+
"content": "[SEG096]",
|
| 1080 |
+
"lstrip": false,
|
| 1081 |
+
"normalized": false,
|
| 1082 |
+
"rstrip": false,
|
| 1083 |
+
"single_word": false,
|
| 1084 |
+
"special": true
|
| 1085 |
+
},
|
| 1086 |
+
"151778": {
|
| 1087 |
+
"content": "[SEG097]",
|
| 1088 |
+
"lstrip": false,
|
| 1089 |
+
"normalized": false,
|
| 1090 |
+
"rstrip": false,
|
| 1091 |
+
"single_word": false,
|
| 1092 |
+
"special": true
|
| 1093 |
+
},
|
| 1094 |
+
"151779": {
|
| 1095 |
+
"content": "[SEG098]",
|
| 1096 |
+
"lstrip": false,
|
| 1097 |
+
"normalized": false,
|
| 1098 |
+
"rstrip": false,
|
| 1099 |
+
"single_word": false,
|
| 1100 |
+
"special": true
|
| 1101 |
+
},
|
| 1102 |
+
"151780": {
|
| 1103 |
+
"content": "[SEG099]",
|
| 1104 |
+
"lstrip": false,
|
| 1105 |
+
"normalized": false,
|
| 1106 |
+
"rstrip": false,
|
| 1107 |
+
"single_word": false,
|
| 1108 |
+
"special": true
|
| 1109 |
+
}
|
| 1110 |
+
},
|
| 1111 |
+
"additional_special_tokens": [
|
| 1112 |
+
"<|im_start|>",
|
| 1113 |
+
"<|im_end|>",
|
| 1114 |
+
"<|object_ref_start|>",
|
| 1115 |
+
"<|object_ref_end|>",
|
| 1116 |
+
"<|box_start|>",
|
| 1117 |
+
"<|box_end|>",
|
| 1118 |
+
"<|quad_start|>",
|
| 1119 |
+
"<|quad_end|>",
|
| 1120 |
+
"<|vision_start|>",
|
| 1121 |
+
"<|vision_end|>",
|
| 1122 |
+
"<|vision_pad|>",
|
| 1123 |
+
"<|image_pad|>",
|
| 1124 |
+
"<|video_pad|>",
|
| 1125 |
+
"<img>",
|
| 1126 |
+
"</img>",
|
| 1127 |
+
"<IMG_CONTEXT>",
|
| 1128 |
+
"<quad>",
|
| 1129 |
+
"</quad>",
|
| 1130 |
+
"<ref>",
|
| 1131 |
+
"</ref>",
|
| 1132 |
+
"<box>",
|
| 1133 |
+
"</box>"
|
| 1134 |
+
],
|
| 1135 |
+
"bos_token": null,
|
| 1136 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 1137 |
+
"clean_up_tokenization_spaces": false,
|
| 1138 |
+
"eos_token": "<|im_end|>",
|
| 1139 |
+
"errors": "replace",
|
| 1140 |
+
"extra_special_tokens": {},
|
| 1141 |
+
"model_max_length": 16384,
|
| 1142 |
+
"pad_token": "<|endoftext|>",
|
| 1143 |
+
"padding_side": "right",
|
| 1144 |
+
"split_special_tokens": false,
|
| 1145 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 1146 |
+
"unk_token": null
|
| 1147 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|