--- license: apache-2.0 tags: - chemistry - drug-discovery - molecular-modeling - mumo pipeline_tag: graph-ml library_name: transformers --- # mumo-pretrain This model was trained using MuMo (Multi-Modal Molecular) framework, as presented in the paper [Structure-Aware Fusion with Progressive Injection for Multimodal Molecular Representation Learning](https://huggingface.co/papers/2510.23640). The official code repository is available at: https://github.com/selmiss/MuMo ## Model Description - **Model Type**: MuMo Pretrained Model - **Training Data**: Molecular structures and properties - **Framework**: PyTorch + Transformers + Mamba-ssm ## Usage ### Loading the Model MuMo uses a custom loading function. Here's how to load the pretrained model: ```shell git clone https://github.com/selmiss/MuMo.git ``` ```python from transformers import AutoConfig, AutoTokenizer from model.load_model import load_model from dataclasses import dataclass # Load configuration and tokenizer repo = "zihaojing/MuMo-Pretrained" config = AutoConfig.from_pretrained(repo, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(repo) # Set up model arguments @dataclass class ModelArgs: model_name_or_path: str = repo model_class: str = "MuMoFinetune" # or "MuMoPretrain" for pretraining cache_dir: str = None model_revision: str = "main" use_auth_token: bool = False task_type: str = None # e.g., "classification" or "regression" for finetuning model_args = ModelArgs() # Load the model model = load_model(config, tokenizer=tokenizer, model_args=model_args) ``` **Notes:** - Use `model_class="MuMoPretrain"` for pretraining or inference - Use `model_class="MuMoFinetune"` for finetuning tasks - Set `task_type` to `"classification"` or `"regression"` when using `MuMoFinetune` - The model supports loading from both Hugging Face Hub (e.g., `"zihaojing/MuMo-Pretrained"`) and local paths (e.g., `"/path/to/model"`) ## Training Details - Training script: See the [official GitHub repository](https://github.com/selmiss/MuMo) for details. - Framework: Transformers + DeepSpeed ## Citation If you use this model or the MuMo framework, please cite our paper: ```bibtex @inproceedings{jing2025mumo, title = {MuMo: Multimodal Molecular Representation Learning via Structural Fusion and Progressive Injection}, author = {Jing, Zihao and Sun, Yan and Li, Yan Yi and Janarthanan, Sugitha and Deng, Alana and Hu, Pingzhao}, booktitle = {Advances in Neural Information Processing Systems (NeurIPS)}, year = {2025} } ```