Model save
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,79 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            base_model: facebook/convnext-base-384
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - generated_from_trainer
         | 
| 6 | 
            +
            metrics:
         | 
| 7 | 
            +
            - accuracy
         | 
| 8 | 
            +
            - precision
         | 
| 9 | 
            +
            - recall
         | 
| 10 | 
            +
            - f1
         | 
| 11 | 
            +
            model-index:
         | 
| 12 | 
            +
            - name: 10-convnext-base-384-finetuned-spiderTraining20-500
         | 
| 13 | 
            +
              results: []
         | 
| 14 | 
            +
            ---
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 17 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # 10-convnext-base-384-finetuned-spiderTraining20-500
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            This model is a fine-tuned version of [facebook/convnext-base-384](https://huggingface.co/facebook/convnext-base-384) on an unknown dataset.
         | 
| 22 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 23 | 
            +
            - Loss: 0.1900
         | 
| 24 | 
            +
            - Accuracy: 0.9510
         | 
| 25 | 
            +
            - Precision: 0.9493
         | 
| 26 | 
            +
            - Recall: 0.9488
         | 
| 27 | 
            +
            - F1: 0.9482
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ## Model description
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            More information needed
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Intended uses & limitations
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            More information needed
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ## Training and evaluation data
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            More information needed
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ## Training procedure
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            ### Training hyperparameters
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            The following hyperparameters were used during training:
         | 
| 46 | 
            +
            - learning_rate: 0.0005
         | 
| 47 | 
            +
            - train_batch_size: 25
         | 
| 48 | 
            +
            - eval_batch_size: 25
         | 
| 49 | 
            +
            - seed: 42
         | 
| 50 | 
            +
            - distributed_type: multi-GPU
         | 
| 51 | 
            +
            - gradient_accumulation_steps: 4
         | 
| 52 | 
            +
            - total_train_batch_size: 100
         | 
| 53 | 
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         | 
| 54 | 
            +
            - lr_scheduler_type: linear
         | 
| 55 | 
            +
            - lr_scheduler_warmup_ratio: 0.1
         | 
| 56 | 
            +
            - num_epochs: 10
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ### Training results
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
         | 
| 61 | 
            +
            |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
         | 
| 62 | 
            +
            | 0.8521        | 1.0   | 80   | 0.6379          | 0.7838   | 0.8075    | 0.7774 | 0.7542 |
         | 
| 63 | 
            +
            | 0.5214        | 2.0   | 160  | 0.3445          | 0.8909   | 0.8935    | 0.8833 | 0.8847 |
         | 
| 64 | 
            +
            | 0.4013        | 3.0   | 240  | 0.2821          | 0.9119   | 0.9205    | 0.9048 | 0.9091 |
         | 
| 65 | 
            +
            | 0.3152        | 4.0   | 320  | 0.2633          | 0.9249   | 0.9264    | 0.9234 | 0.9225 |
         | 
| 66 | 
            +
            | 0.2552        | 5.0   | 400  | 0.2837          | 0.9229   | 0.9246    | 0.9179 | 0.9194 |
         | 
| 67 | 
            +
            | 0.236         | 6.0   | 480  | 0.2367          | 0.9329   | 0.9311    | 0.9309 | 0.9301 |
         | 
| 68 | 
            +
            | 0.2178        | 7.0   | 560  | 0.2161          | 0.9389   | 0.9384    | 0.9354 | 0.9360 |
         | 
| 69 | 
            +
            | 0.1712        | 8.0   | 640  | 0.1985          | 0.9459   | 0.9461    | 0.9434 | 0.9439 |
         | 
| 70 | 
            +
            | 0.1607        | 9.0   | 720  | 0.2024          | 0.9489   | 0.9463    | 0.9473 | 0.9454 |
         | 
| 71 | 
            +
            | 0.1592        | 10.0  | 800  | 0.1900          | 0.9510   | 0.9493    | 0.9488 | 0.9482 |
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            ### Framework versions
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            - Transformers 4.33.3
         | 
| 77 | 
            +
            - Pytorch 2.0.1+cu117
         | 
| 78 | 
            +
            - Datasets 2.14.5
         | 
| 79 | 
            +
            - Tokenizers 0.13.3
         |