File size: 31,443 Bytes
66407c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
{
"cells": [
{
"cell_type": "markdown",
"id": "0ddc582b",
"metadata": {},
"source": [
"# VeRL Ray API Tutorial"
]
},
{
"cell_type": "markdown",
"id": "71fe3b94",
"metadata": {},
"source": [
"## Chapter 1: Ray Basics"
]
},
{
"cell_type": "code",
"execution_count": 144,
"id": "1347d381",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os"
]
},
{
"cell_type": "code",
"execution_count": 145,
"id": "e75b9d44",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import warnings\n",
"\n",
"import ray\n",
"import torch\n",
"\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "code",
"execution_count": 146,
"id": "2e90ae00",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-11-01 17:27:19,132\tINFO worker.py:1752 -- Started a local Ray instance.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9cc9d2ccbdfb48918c8fd6cd13a0807a",
"version_major": 2,
"version_minor": 0
},
"text/html": [
"<div class=\"lm-Widget p-Widget lm-Panel p-Panel jp-Cell-outputWrapper\">\n",
" <div style=\"margin-left: 50px;display: flex;flex-direction: row;align-items: center\">\n",
" <div class=\"jp-RenderedHTMLCommon\" style=\"display: flex; flex-direction: row;\">\n",
" <svg viewBox=\"0 0 567 224\" fill=\"none\" xmlns=\"http://www.w3.org/2000/svg\" style=\"height: 3em;\">\n",
" <g clip-path=\"url(#clip0_4338_178347)\">\n",
" <path d=\"M341.29 165.561H355.29L330.13 129.051C345.63 123.991 354.21 112.051 354.21 94.2307C354.21 71.3707 338.72 58.1807 311.88 58.1807H271V165.561H283.27V131.661H311.8C314.25 131.661 316.71 131.501 319.01 131.351L341.25 165.561H341.29ZM283.29 119.851V70.0007H311.82C331.3 70.0007 342.34 78.2907 342.34 94.5507C342.34 111.271 331.34 119.861 311.82 119.861L283.29 119.851ZM451.4 138.411L463.4 165.561H476.74L428.74 58.1807H416L367.83 165.561H380.83L392.83 138.411H451.4ZM446.19 126.601H398L422 72.1407L446.24 126.601H446.19ZM526.11 128.741L566.91 58.1807H554.35L519.99 114.181L485.17 58.1807H472.44L514.01 129.181V165.541H526.13V128.741H526.11Z\" fill=\"var(--jp-ui-font-color0)\"/>\n",
" <path d=\"M82.35 104.44C84.0187 97.8827 87.8248 92.0678 93.1671 87.9146C98.5094 83.7614 105.083 81.5067 111.85 81.5067C118.617 81.5067 125.191 83.7614 130.533 87.9146C135.875 92.0678 139.681 97.8827 141.35 104.44H163.75C164.476 101.562 165.622 98.8057 167.15 96.2605L127.45 56.5605C121.071 60.3522 113.526 61.6823 106.235 60.3005C98.9443 58.9187 92.4094 54.9203 87.8602 49.0574C83.3109 43.1946 81.0609 35.8714 81.5332 28.4656C82.0056 21.0599 85.1679 14.0819 90.4252 8.8446C95.6824 3.60726 102.672 0.471508 110.08 0.0272655C117.487 -0.416977 124.802 1.86091 130.647 6.4324C136.493 11.0039 140.467 17.5539 141.821 24.8501C143.175 32.1463 141.816 39.6859 138 46.0505L177.69 85.7505C182.31 82.9877 187.58 81.4995 192.962 81.4375C198.345 81.3755 203.648 82.742 208.33 85.3976C213.012 88.0532 216.907 91.9029 219.616 96.5544C222.326 101.206 223.753 106.492 223.753 111.875C223.753 117.258 222.326 122.545 219.616 127.197C216.907 131.848 213.012 135.698 208.33 138.353C203.648 141.009 198.345 142.375 192.962 142.313C187.58 142.251 182.31 140.763 177.69 138L138 177.7C141.808 184.071 143.155 191.614 141.79 198.91C140.424 206.205 136.44 212.75 130.585 217.313C124.731 221.875 117.412 224.141 110.004 223.683C102.596 223.226 95.6103 220.077 90.3621 214.828C85.1139 209.58 81.9647 202.595 81.5072 195.187C81.0497 187.779 83.3154 180.459 87.878 174.605C92.4405 168.751 98.9853 164.766 106.281 163.401C113.576 162.035 121.119 163.383 127.49 167.19L167.19 127.49C165.664 124.941 164.518 122.182 163.79 119.3H141.39C139.721 125.858 135.915 131.673 130.573 135.826C125.231 139.98 118.657 142.234 111.89 142.234C105.123 142.234 98.5494 139.98 93.2071 135.826C87.8648 131.673 84.0587 125.858 82.39 119.3H60C58.1878 126.495 53.8086 132.78 47.6863 136.971C41.5641 141.163 34.1211 142.972 26.7579 142.059C19.3947 141.146 12.6191 137.574 7.70605 132.014C2.79302 126.454 0.0813599 119.29 0.0813599 111.87C0.0813599 104.451 2.79302 97.2871 7.70605 91.7272C12.6191 86.1673 19.3947 82.5947 26.7579 81.6817C34.1211 80.7686 41.5641 82.5781 47.6863 86.7696C53.8086 90.9611 58.1878 97.2456 60 104.44H82.35ZM100.86 204.32C103.407 206.868 106.759 208.453 110.345 208.806C113.93 209.159 117.527 208.258 120.522 206.256C123.517 204.254 125.725 201.276 126.771 197.828C127.816 194.38 127.633 190.677 126.253 187.349C124.874 184.021 122.383 181.274 119.205 179.577C116.027 177.88 112.359 177.337 108.826 178.042C105.293 178.746 102.113 180.654 99.8291 183.44C97.5451 186.226 96.2979 189.718 96.3 193.32C96.2985 195.364 96.7006 197.388 97.4831 199.275C98.2656 201.163 99.4132 202.877 100.86 204.32ZM204.32 122.88C206.868 120.333 208.453 116.981 208.806 113.396C209.159 109.811 208.258 106.214 206.256 103.219C204.254 100.223 201.275 98.0151 197.827 96.97C194.38 95.9249 190.676 96.1077 187.348 97.4873C184.02 98.8669 181.274 101.358 179.577 104.536C177.879 107.714 177.337 111.382 178.041 114.915C178.746 118.448 180.653 121.627 183.439 123.911C186.226 126.195 189.717 127.443 193.32 127.44C195.364 127.443 197.388 127.042 199.275 126.259C201.163 125.476 202.878 124.328 204.32 122.88ZM122.88 19.4205C120.333 16.8729 116.981 15.2876 113.395 14.9347C109.81 14.5817 106.213 15.483 103.218 17.4849C100.223 19.4868 98.0146 22.4654 96.9696 25.9131C95.9245 29.3608 96.1073 33.0642 97.4869 36.3922C98.8665 39.7202 101.358 42.4668 104.535 44.1639C107.713 45.861 111.381 46.4036 114.914 45.6992C118.447 44.9949 121.627 43.0871 123.911 40.301C126.195 37.515 127.442 34.0231 127.44 30.4205C127.44 28.3772 127.038 26.3539 126.255 24.4664C125.473 22.5788 124.326 20.8642 122.88 19.4205ZM19.42 100.86C16.8725 103.408 15.2872 106.76 14.9342 110.345C14.5813 113.93 15.4826 117.527 17.4844 120.522C19.4863 123.518 22.4649 125.726 25.9127 126.771C29.3604 127.816 33.0638 127.633 36.3918 126.254C39.7198 124.874 42.4664 122.383 44.1635 119.205C45.8606 116.027 46.4032 112.359 45.6988 108.826C44.9944 105.293 43.0866 102.114 40.3006 99.8296C37.5145 97.5455 34.0227 96.2983 30.42 96.3005C26.2938 96.3018 22.337 97.9421 19.42 100.86ZM100.86 100.86C98.3125 103.408 96.7272 106.76 96.3742 110.345C96.0213 113.93 96.9226 117.527 98.9244 120.522C100.926 123.518 103.905 125.726 107.353 126.771C110.8 127.816 114.504 127.633 117.832 126.254C121.16 124.874 123.906 122.383 125.604 119.205C127.301 116.027 127.843 112.359 127.139 108.826C126.434 105.293 124.527 102.114 121.741 99.8296C118.955 97.5455 115.463 96.2983 111.86 96.3005C109.817 96.299 107.793 96.701 105.905 97.4835C104.018 98.2661 102.303 99.4136 100.86 100.86Z\" fill=\"#00AEEF\"/>\n",
" </g>\n",
" <defs>\n",
" <clipPath id=\"clip0_4338_178347\">\n",
" <rect width=\"566.93\" height=\"223.75\" fill=\"white\"/>\n",
" </clipPath>\n",
" </defs>\n",
" </svg>\n",
"</div>\n",
"\n",
" <table class=\"jp-RenderedHTMLCommon\" style=\"border-collapse: collapse;color: var(--jp-ui-font-color1);font-size: var(--jp-ui-font-size1);\">\n",
" <tr>\n",
" <td style=\"text-align: left\"><b>Python version:</b></td>\n",
" <td style=\"text-align: left\"><b>3.9.2</b></td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left\"><b>Ray version:</b></td>\n",
" <td style=\"text-align: left\"><b>2.10.0</b></td>\n",
" </tr>\n",
" \n",
"</table>\n",
"\n",
" </div>\n",
"</div>\n"
],
"text/plain": [
"RayContext(dashboard_url='', python_version='3.9.2', ray_version='2.10.0', ray_commit='09abba26b5bf2707639bb637c208d062a47b46f6')"
]
},
"execution_count": 146,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[36m(GPUAccumulator pid=224400)\u001b[0m rank 0, value: tensor([1.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulator pid=225234)\u001b[0m rank 2, value: tensor([3.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulator pid=225607)\u001b[0m rank 0, value: tensor([2.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulator pid=226423)\u001b[0m rank 1, value: tensor([3.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulator pid=226857)\u001b[0m rank 3, value: tensor([6.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulatorDecorator pid=227475)\u001b[0m 10\n",
"\u001b[36m(GPUAccumulatorDecorator pid=227475)\u001b[0m rank 0, value: tensor([10.], device='cuda:0')\n",
"\u001b[36m(GPUAccumulatorDecorator pid=227655)\u001b[0m rank 1, value: tensor([11.], device='cuda:0')\n"
]
}
],
"source": [
"# Build a local ray cluster. The head node and worker node are on this machine\n",
"ray.init()"
]
},
{
"cell_type": "markdown",
"id": "a127e4e4",
"metadata": {},
"source": [
"Implement an Accumulator class."
]
},
{
"cell_type": "code",
"execution_count": 147,
"id": "20e7b9a3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"@ray.remote\n",
"class Accumulator:\n",
" def __init__(self):\n",
" self.value = 0\n",
"\n",
" def add(self, x):\n",
" self.value += x\n",
"\n",
" def get_value(self):\n",
" return self.value"
]
},
{
"cell_type": "code",
"execution_count": 148,
"id": "3b80098c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Instantiate an accumulator. Accumulator can be viewed as a process, acting as an RPC service.\n",
"accumulator = Accumulator.remote()"
]
},
{
"cell_type": "code",
"execution_count": 149,
"id": "b14b1009",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"value_ref = accumulator.get_value.remote() # Check the current value. Note that this function returns immediately and does not actually wait for the remote execution to complete.\n",
"# Get the value\n",
"value = ray.get(value_ref)\n",
"print(value)"
]
},
{
"cell_type": "code",
"execution_count": 150,
"id": "513a84b3",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
}
],
"source": [
"# Accumulate, then check the result.\n",
"accumulator.add.remote(10) # Similarly, the 'add' here will return immediately.\n",
"new_value = ray.get(accumulator.get_value.remote())\n",
"print(new_value)"
]
},
{
"cell_type": "markdown",
"id": "3c332fe0",
"metadata": {},
"source": [
"## Chapter 2: Resource Pool and RayWorkerGroup\n",
"In the previous example, it was a simple single-process worker. \n",
"In this example, we implement a worker with a GPU and form a RayWorkerGroup. Within this RayWorkerGroup, we implement a simple operation of an accumulator."
]
},
{
"cell_type": "code",
"execution_count": 151,
"id": "04229afb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from verl.single_controller.base import Worker\n",
"from verl.single_controller.ray.base import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup, merge_resource_pool"
]
},
{
"cell_type": "code",
"execution_count": 152,
"id": "0d0dbd58",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"resource_pool = RayResourcePool([4], use_gpu=True)"
]
},
{
"cell_type": "code",
"execution_count": 153,
"id": "68f6838a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"@ray.remote\n",
"class GPUAccumulator(Worker):\n",
" def __init__(self) -> None:\n",
" super().__init__()\n",
" # The initial value of each rank is the same as the rank\n",
" self.value = torch.zeros(size=(1,), device=\"cuda\") + self.rank\n",
"\n",
" def add(self, x):\n",
" self.value += x\n",
" print(f\"rank {self.rank}, value: {self.value}\")\n",
" return self.value.cpu()"
]
},
{
"cell_type": "code",
"execution_count": 154,
"id": "23aad8fe",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([1.]), tensor([2.]), tensor([3.]), tensor([4.])]\n"
]
}
],
"source": [
"# Each worker's initial value is its rank, and then each rank's value is incremented by 1, so the values obtained on each rank are [1, 2, 3, 4]\n",
"class_with_args = RayClassWithInitArgs(cls=GPUAccumulator)\n",
"worker_group = RayWorkerGroup(resource_pool, class_with_args)\n",
"print(worker_group.execute_all_sync(\"add\", x=[1, 1, 1, 1]))"
]
},
{
"cell_type": "markdown",
"id": "e6705284",
"metadata": {},
"source": [
"The principle of parameter passing: The input parameter is a list of length world_size, where each element in the list is dispatched respectively to each worker in the RayWorkerGroup. \n",
"The return parameter is also a list, corresponding to the return value of each worker."
]
},
{
"cell_type": "markdown",
"id": "d25c2412",
"metadata": {},
"source": [
"### GPU Resource Sharing"
]
},
{
"cell_type": "markdown",
"id": "f74f6d24",
"metadata": {},
"source": [
"RayWorkerGroups mapped to the same resource pool share the GPU. In this example, we implement three resource pools: the first occupies 4 GPUs, the second also occupies 4 GPUs, and the last occupies all 8 GPUs. Among them, the first resource pool reuses the resource pool mentioned above."
]
},
{
"cell_type": "code",
"execution_count": 155,
"id": "49f9c06f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Create a new resource pool and then merge the newly created resource pool with the previous one.\n",
"resource_pool_1 = RayResourcePool([4], use_gpu=True, name_prefix=\"a\")\n",
"resource_pool_merge = merge_resource_pool(resource_pool, resource_pool_1)"
]
},
{
"cell_type": "code",
"execution_count": 156,
"id": "05c2e305",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Establish a RayWorkerGroup on the newly created resource pool.\n",
"worker_group_1 = RayWorkerGroup(resource_pool_1, class_with_args)\n",
"worker_group_merge = RayWorkerGroup(resource_pool_merge, class_with_args)"
]
},
{
"cell_type": "code",
"execution_count": 157,
"id": "6b9b13f4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([2.]), tensor([3.]), tensor([4.]), tensor([5.])]\n"
]
}
],
"source": [
"# Run 'add' on the second set of 4 GPUs; the result should be [2, 3, 4, 5].\n",
"output_1 = worker_group_1.execute_all_sync(\"add\", x=[2, 2, 2, 2])\n",
"print(output_1)"
]
},
{
"cell_type": "code",
"execution_count": 158,
"id": "d856d030",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([3.]), tensor([4.]), tensor([5.]), tensor([6.]), tensor([7.]), tensor([8.]), tensor([9.]), tensor([10.])]\n"
]
}
],
"source": [
"# Run 'add' on the merged set of 8 GPUs; the result should be [3, 4, 5, 6, 7, 8, 9, 10].\n",
"output_merge = worker_group_merge.execute_all_sync(\"add\", x=[3, 3, 3, 3, 3, 3, 3, 3])\n",
"print(output_merge)"
]
},
{
"cell_type": "code",
"execution_count": 159,
"id": "33a4628c",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 4 8\n"
]
}
],
"source": [
"print(worker_group.world_size, worker_group_1.world_size, worker_group_merge.world_size)"
]
},
{
"cell_type": "markdown",
"id": "3df19d13",
"metadata": {},
"source": [
"## Chapter 3: Data Dispatch, Execution and Collection"
]
},
{
"cell_type": "markdown",
"id": "acb22d9d",
"metadata": {},
"source": [
"In the above example, we used the `execute_all_sync` function in the RayWorkerGroup to dispatch data from the driver to each worker. This is very inconvenient for coding. \n",
"In this chapter, we use the form of function decorators to allow RayWorkerGroup to directly call functions written in the Worker, and to greatly simplify parameter passing."
]
},
{
"cell_type": "code",
"execution_count": 160,
"id": "35237432",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from verl.single_controller.base.decorator import Dispatch, Execute, register"
]
},
{
"cell_type": "code",
"execution_count": 161,
"id": "88b8ba3b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"@ray.remote\n",
"class GPUAccumulatorDecorator(Worker):\n",
" def __init__(self) -> None:\n",
" super().__init__()\n",
" # The initial value of each rank is the same as the rank\n",
" self.value = torch.zeros(size=(1,), device=\"cuda\") + self.rank\n",
"\n",
" # map from a single input to all the worker\n",
" @register(Dispatch.ONE_TO_ALL)\n",
" def add(self, x):\n",
" print(x)\n",
" self.value = self.value + x\n",
" print(f\"rank {self.rank}, value: {self.value}\")\n",
" return self.value.cpu()"
]
},
{
"cell_type": "code",
"execution_count": 162,
"id": "eddaa043",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"class_with_args = RayClassWithInitArgs(cls=GPUAccumulatorDecorator)\n",
"gpu_accumulator_decorator = RayWorkerGroup(resource_pool_merge, class_with_args)"
]
},
{
"cell_type": "code",
"execution_count": 163,
"id": "10087c91",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([10.]), tensor([11.]), tensor([12.]), tensor([13.]), tensor([14.]), tensor([15.]), tensor([16.]), tensor([17.])]\n"
]
}
],
"source": [
"# As we can see, 10 is automatically dispatched to each Worker in this RayWorkerGroup.\n",
"print(gpu_accumulator_decorator.add(x=10))"
]
},
{
"cell_type": "markdown",
"id": "540ee6ad",
"metadata": {},
"source": [
"### Custom Dispatch, Collection\n",
"Users can customize `dispatch` and `collection` function. You only need to write the `dispatch_fn` and `collect_fn` functions yourself. We also support executing RPC only on rank_zero, with specific examples provided below."
]
},
{
"cell_type": "code",
"execution_count": 164,
"id": "8e041270",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from verl.single_controller.base.decorator import Dispatch, collect_all_to_all, register"
]
},
{
"cell_type": "code",
"execution_count": 165,
"id": "43b5be31",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def two_to_all_dispatch_fn(worker_group, *args, **kwargs):\n",
" \"\"\"\n",
" Assume the input is a list of 2. Duplicate the input interleaved and pass to each worker.\n",
" \"\"\"\n",
" for arg in args:\n",
" assert len(arg) == 2\n",
" for i in range(worker_group.world_size - 2):\n",
" arg.append(arg[i % 2])\n",
" for k, v in kwargs.items():\n",
" assert len(v) == 2\n",
" for i in range(worker_group.world_size - 2):\n",
" v.append(v[i % 2])\n",
" return args, kwargs\n",
"\n",
"\n",
"@ray.remote\n",
"class TestActor(Worker):\n",
" # TODO: pass *args and **kwargs is bug prone and not very convincing\n",
" def __init__(self, x) -> None:\n",
" super().__init__()\n",
" self._x = x\n",
"\n",
" def foo(self, y):\n",
" return self._x + y\n",
"\n",
" @register(dispatch_mode=Dispatch.ALL_TO_ALL, execute_mode=Execute.RANK_ZERO)\n",
" def foo_rank_zero(self, x, y):\n",
" return self._x + y + x\n",
"\n",
" @register(dispatch_mode={\"dispatch_fn\": two_to_all_dispatch_fn, \"collect_fn\": collect_all_to_all})\n",
" def foo_custom(self, x, y):\n",
" return self._x + y + x"
]
},
{
"cell_type": "code",
"execution_count": 166,
"id": "83ec6609",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"class_with_args = RayClassWithInitArgs(cls=TestActor, x=2)\n",
"worker_group = RayWorkerGroup(resource_pool, class_with_args)"
]
},
{
"cell_type": "code",
"execution_count": 167,
"id": "62c58d8a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"output_ref = worker_group.foo_custom(x=[1, 2], y=[5, 6])\n",
"assert output_ref == [8, 10, 8, 10]\n",
"\n",
"output_ref = worker_group.foo_rank_zero(x=1, y=2)\n",
"assert output_ref == 5"
]
},
{
"cell_type": "code",
"execution_count": 168,
"id": "14689353",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8\n"
]
}
],
"source": [
"print(gpu_accumulator_decorator.world_size)"
]
},
{
"cell_type": "code",
"execution_count": 169,
"id": "2c80bbf4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Shutdown ray cluster\n",
"ray.shutdown()"
]
},
{
"cell_type": "markdown",
"id": "a5c8151c",
"metadata": {},
"source": [
"## Chapter 4: NVMegatronRayWorkerGroup"
]
},
{
"cell_type": "markdown",
"id": "cd5680e9",
"metadata": {},
"source": [
"Due to the Ray issue, we can only support max_colocate_count=1 in RayResourcePool for now. \n",
"This means that each GPU can only have one process.\n",
"We can support max_colocate > 1 when applying this pull request: https://github.com/ray-project/ray/pull/44385"
]
},
{
"cell_type": "markdown",
"id": "92724419",
"metadata": {},
"source": [
"Therefore, we need to restart the ray and initialize a new resource_pool to demonstrate the **NVMegatronRayWorkerGroup**"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b038538",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Build a local ray cluster. The head node and worker node are on this machine\n",
"ray.init()"
]
},
{
"cell_type": "markdown",
"id": "ebfd8798",
"metadata": {},
"source": [
"Finally, we implement a `NVMegatronRayWorkerGroup`, within which we create a Megatron and then run a tensor parallel (tp) split Llama mlp layer. Here, we use a complex dispatch mode, `Megatron_COMPUTE`. This dispatch mode assumes that user passes the data partitioned by DP dimension. The data is dispatched to all tp/pp ranks within the same dp group, and ultimately only collects output data from tp=0 and the last pp. In this way, for users that only write code on the driver, the Megatron behind the RPC becomes transparent."
]
},
{
"cell_type": "code",
"execution_count": 171,
"id": "5a032154",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/opt/tiger/Megatron-LM\n",
"/opt/tiger/Megatron-LM/megatron/__init__.py\n"
]
}
],
"source": [
"import sys\n",
"\n",
"current_pythonpath = os.environ.get(\"PYTHONPATH\", \"\")\n",
"\n",
"new_path = \"/opt/tiger/Megatron-LM\"\n",
"\n",
"new_pythonpath = f\"{new_path}:{current_pythonpath}\" if current_pythonpath else new_path\n",
"\n",
"os.environ[\"PYTHONPATH\"] = new_pythonpath\n",
"\n",
"print(new_path)\n",
"sys.path.append(new_path)\n",
"\n",
"import megatron\n",
"\n",
"print(megatron.__file__)"
]
},
{
"cell_type": "code",
"execution_count": 172,
"id": "8c84cd5a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from megatron.core import parallel_state as mpu\n",
"from omegaconf import OmegaConf\n",
"\n",
"from verl.single_controller.base.decorator import Dispatch, Execute, register\n",
"from verl.single_controller.base.megatron.worker import MegatronWorker\n",
"from verl.single_controller.ray.base import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup\n",
"from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup"
]
},
{
"cell_type": "code",
"execution_count": 173,
"id": "1b1debcc",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"resource_pool = RayResourcePool([4], use_gpu=True, max_colocate_count=1)"
]
},
{
"cell_type": "code",
"execution_count": 174,
"id": "bccbe081",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"@ray.remote\n",
"class MLPLayerWorker(MegatronWorker):\n",
" def __init__(self):\n",
" super().__init__()\n",
" rank = int(os.environ[\"LOCAL_RANK\"])\n",
" torch.distributed.init_process_group(backend=\"nccl\")\n",
" torch.cuda.set_device(rank)\n",
"\n",
" mpu.initialize_model_parallel(\n",
" tensor_model_parallel_size=4,\n",
" pipeline_model_parallel_size=1,\n",
" virtual_pipeline_model_parallel_size=None,\n",
" pipeline_model_parallel_split_rank=None,\n",
" use_sharp=False,\n",
" context_parallel_size=1,\n",
" expert_model_parallel_size=1,\n",
" nccl_communicator_config_path=None,\n",
" )\n",
" from megatron.core import tensor_parallel\n",
"\n",
" tensor_parallel.model_parallel_cuda_manual_seed(10)\n",
"\n",
" @register(Dispatch.ONE_TO_ALL)\n",
" def init_model(self, config):\n",
" from omegaconf import OmegaConf\n",
"\n",
" from verl.models.llama.megatron.layers import ParallelLlamaMLP\n",
" from verl.utils.megatron_utils import init_model_parallel_config\n",
"\n",
" megatron_config = OmegaConf.create(\n",
" {\n",
" \"sequence_parallel\": False,\n",
" \"param_dtype\": \"fp32\",\n",
" \"tensor_model_parallel_size\": mpu.get_tensor_model_parallel_world_size(),\n",
" \"pipeline_model_parallel_rank\": mpu.get_pipeline_model_parallel_rank(),\n",
" \"pipeline_model_parallel_size\": mpu.get_pipeline_model_parallel_world_size(),\n",
" \"virtual_pipeline_model_parallel_rank\": mpu.get_virtual_pipeline_model_parallel_rank(),\n",
" \"virtual_pipeline_model_parallel_size\": mpu.get_virtual_pipeline_model_parallel_world_size(),\n",
" }\n",
" )\n",
"\n",
" megatron_config = init_model_parallel_config(megatron_config)\n",
" self.parallel_layer = ParallelLlamaMLP(config=config, megatron_config=megatron_config)\n",
"\n",
" @register(Dispatch.ONE_TO_ALL)\n",
" def get_weights(self):\n",
" output = {}\n",
" for key, val in self.parallel_layer.named_parameters():\n",
" output[key] = val\n",
" return output\n",
"\n",
" @register(Dispatch.MEGATRON_COMPUTE)\n",
" def run_layer(self, x):\n",
" x = x.to(\"cuda\")\n",
" y = self.parallel_layer(x)\n",
" return y"
]
},
{
"cell_type": "code",
"execution_count": 175,
"id": "a655271d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"layer_cls = RayClassWithInitArgs(cls=MLPLayerWorker)\n",
"layer_worker_group = NVMegatronRayWorkerGroup(\n",
" resource_pool=resource_pool,\n",
" ray_cls_with_init=layer_cls,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 176,
"id": "f105ebee",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 4 1 1\n"
]
}
],
"source": [
"print(layer_worker_group.world_size, layer_worker_group.tp_size, layer_worker_group.pp_size, layer_worker_group.dp_size)"
]
},
{
"cell_type": "code",
"execution_count": 177,
"id": "38655091",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"ffn_hidden_size = 11008\n",
"batch_size = 16\n",
"seq_len = 2048\n",
"hidden_size = 4096\n",
"\n",
"config = OmegaConf.create(\n",
" {\n",
" \"hidden_size\": hidden_size,\n",
" \"intermediate_size\": ffn_hidden_size,\n",
" \"hidden_act\": \"silu\",\n",
" \"pretraining_tp\": 1,\n",
" \"tp\": layer_worker_group.tp_size,\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 178,
"id": "a026efca",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"x = torch.rand(size=(seq_len, batch_size, hidden_size), dtype=torch.float32)"
]
},
{
"cell_type": "code",
"execution_count": 179,
"id": "f5fcaf13",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[None, None, None, None]"
]
},
"execution_count": 179,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"layer_worker_group.init_model(config)"
]
},
{
"cell_type": "code",
"execution_count": 180,
"id": "3f5cc9b4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([2048, 16, 4096])\n"
]
}
],
"source": [
"output = layer_worker_group.run_layer([x]) # This must be a list of size 1, ensuring that the input equals the data parallel (dp).\n",
"print(output[0].shape)"
]
},
{
"cell_type": "code",
"execution_count": 181,
"id": "49792210",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Shutdown ray cluster\n",
"ray.shutdown()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|