# Copyright 2023-2025 SGLang Team # Copyright Amazon.com, Inc. or its affiliates. # Copyright 2025 Reallm Labs Ltd. or its affiliates # Copyright 2025 ModelBest Inc. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the Geometry3k dataset to parquet format """ import argparse import os import datasets from verl.utils.hdfs_io import copy, makedirs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--local_dir", default="~/data/geo3k_multiturn_w_tool") parser.add_argument("--hdfs_dir", default=None) args = parser.parse_args() data_source = "hiyouga/geometry3k" dataset = datasets.load_dataset(data_source) train_dataset = dataset["train"] test_dataset = dataset["test"] instruction_following = ( r"You FIRST think about the reasoning process as an internal monologue and then provide the final answer. " r"The reasoning process MUST BE enclosed within tags. The final answer MUST BE put in \boxed{}." ) # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): problem = example.pop("problem") prompt = problem + " " + instruction_following answer = example.pop("answer") images = example.pop("images") data = { "data_source": data_source, "prompt": [ { "role": "system", "content": ( "You are a math expert. You are given a question and you need to solve it step by step. " "Reasoning step by step before any tool call. " "You should use the `calc_geo3k_reward` tool after step by step solving the question, " "before generate final answer at least once and refine your answer if necessary. " ), }, { "role": "user", "content": prompt, }, ], "images": images, "ability": "math", "reward_model": {"style": "rule", "ground_truth": answer}, "extra_info": { "split": split, "index": idx, "answer": answer, "question": problem, "need_tools_kwargs": True, "tools_kwargs": { "calc_geo3k_reward": { "create_kwargs": {"ground_truth": answer}, # "execute_kwargs": {}, # "calc_reward_kwargs": {}, # "release_kwargs": {}, }, }, }, } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True, num_proc=8) test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True, num_proc=8) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, "train.parquet")) test_dataset.to_parquet(os.path.join(local_dir, "test.parquet")) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)