# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess Hellaswag dataset. """ import argparse import os import re import datasets from verl.utils.hdfs_io import copy, makedirs def preprocess(text): text = text.strip() # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag. text = text.replace(" [title]", ". ") text = re.sub("\\[.*?\\]", "", text) text = text.replace(" ", " ") return text if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--local_dir", default="/opt/tiger/hellaswag") parser.add_argument("--hdfs_dir", default=None) args = parser.parse_args() data_source = "Rowan/hellaswag" dataset = datasets.load_dataset(data_source, trust_remote_code=True) train_dataset = dataset["train"] val_dataset = dataset["validation"] test_dataset = dataset["test"] instruction = "Please complete the following sentence.\n" def make_map_fn(split): def process_fn(doc, idx): ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize() query = preprocess(doc["activity_label"] + ": " + ctx) choices = [preprocess(ending) for ending in doc["endings"]] gold = int(doc["label"]) data = { "data_source": data_source, "prompt": [{"role": "user", "content": query}], "ability": "nlp", "reward_model": { "style": "model", "eval": "multiple_choice", # using loglikelihood "ground_truth": gold, "choices": choices, }, "extra_info": {"split": split, "index": idx}, } return data return process_fn # filter data that doesn't have a label train_dataset = train_dataset.filter(lambda x: len(x["label"]) > 0) val_dataset = val_dataset.filter(lambda x: len(x["label"]) > 0) test_dataset = test_dataset.filter(lambda x: len(x["label"]) > 0) train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True) val_dataset = val_dataset.map(function=make_map_fn("validation"), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, "train.parquet")) val_dataset.to_parquet(os.path.join(local_dir, "validation.parquet")) test_dataset.to_parquet(os.path.join(local_dir, "test.parquet")) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)