# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the MATH-lighteval dataset to parquet format """ import argparse import os import datasets from verl.utils.hdfs_io import copy, makedirs from verl.utils.reward_score.math import last_boxed_only_string, remove_boxed def extract_solution(solution_str): return remove_boxed(last_boxed_only_string(solution_str)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--local_dir", default="~/data/math") parser.add_argument("--hdfs_dir", default=None) args = parser.parse_args() # 'lighteval/MATH' is no longer available on huggingface. # Use mirror repo: DigitalLearningGmbH/MATH-lighteval data_source = "DigitalLearningGmbH/MATH-lighteval" print(f"Loading the {data_source} dataset from huggingface...", flush=True) dataset = datasets.load_dataset(data_source, trust_remote_code=True) train_dataset = dataset["train"] test_dataset = dataset["test"] instruction_following = "Let's think step by step and output the final answer within \\boxed{}." # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): question = example.pop("problem") question = question + " " + instruction_following answer = example.pop("solution") solution = extract_solution(answer) data = { "data_source": data_source, "prompt": [{"role": "user", "content": question}], "ability": "math", "reward_model": {"style": "rule", "ground_truth": solution}, "extra_info": {"split": split, "index": idx}, } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, "train.parquet")) test_dataset.to_parquet(os.path.join(local_dir, "test.parquet")) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)