See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloomz-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 41cfaa113d837568_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/41cfaa113d837568_train_data.json
type:
field_instruction: premise
field_output: hypothesis
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c9fe4bf0-c690-4c16-939a-e900e96b8da2
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- query_key_value
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/41cfaa113d837568_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.029732703000029732
wandb_entity: null
wandb_mode: online
wandb_name: 791c5a53-d2c7-4e74-a1e0-6065f33c468d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 791c5a53-d2c7-4e74-a1e0-6065f33c468d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c9fe4bf0-c690-4c16-939a-e900e96b8da2
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 8832
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 24.65 | 0.0002 | 1 | 3.3734 |
| 17.8944 | 0.0196 | 100 | 2.3096 |
| 17.1278 | 0.0392 | 200 | 2.2631 |
| 20.0682 | 0.0588 | 300 | 2.2257 |
| 17.2783 | 0.0784 | 400 | 2.2106 |
| 20.953 | 0.0981 | 500 | 2.1982 |
| 18.0772 | 0.1177 | 600 | 2.1857 |
| 18.651 | 0.1373 | 700 | 2.1725 |
| 18.3775 | 0.1569 | 800 | 2.1652 |
| 18.2149 | 0.1765 | 900 | 2.1505 |
| 16.9199 | 0.1961 | 1000 | 2.1489 |
| 15.127 | 0.2157 | 1100 | 2.1384 |
| 18.3053 | 0.2353 | 1200 | 2.1365 |
| 16.8984 | 0.2550 | 1300 | 2.1276 |
| 16.4964 | 0.2746 | 1400 | 2.1240 |
| 15.2356 | 0.2942 | 1500 | 2.1224 |
| 17.4402 | 0.3138 | 1600 | 2.1186 |
| 16.7051 | 0.3334 | 1700 | 2.1171 |
| 15.4807 | 0.3530 | 1800 | 2.1089 |
| 16.4821 | 0.3726 | 1900 | 2.1048 |
| 17.9296 | 0.3922 | 2000 | 2.0956 |
| 20.2905 | 0.4118 | 2100 | 2.0972 |
| 18.5316 | 0.4315 | 2200 | 2.0932 |
| 17.8267 | 0.4511 | 2300 | 2.0877 |
| 16.5729 | 0.4707 | 2400 | 2.0820 |
| 18.0547 | 0.4903 | 2500 | 2.0832 |
| 16.7011 | 0.5099 | 2600 | 2.0749 |
| 16.4063 | 0.5295 | 2700 | 2.0728 |
| 15.8053 | 0.5491 | 2800 | 2.0709 |
| 18.0942 | 0.5687 | 2900 | 2.0662 |
| 16.7752 | 0.5884 | 3000 | 2.0613 |
| 16.2293 | 0.6080 | 3100 | 2.0576 |
| 18.3454 | 0.6276 | 3200 | 2.0525 |
| 14.8829 | 0.6472 | 3300 | 2.0511 |
| 15.7294 | 0.6668 | 3400 | 2.0501 |
| 17.0917 | 0.6864 | 3500 | 2.0480 |
| 17.7716 | 0.7060 | 3600 | 2.0442 |
| 15.2095 | 0.7256 | 3700 | 2.0400 |
| 17.79 | 0.7452 | 3800 | 2.0327 |
| 17.0274 | 0.7649 | 3900 | 2.0350 |
| 16.1242 | 0.7845 | 4000 | 2.0327 |
| 16.3873 | 0.8041 | 4100 | 2.0258 |
| 16.1772 | 0.8237 | 4200 | 2.0250 |
| 16.4274 | 0.8433 | 4300 | 2.0250 |
| 16.6272 | 0.8629 | 4400 | 2.0175 |
| 16.4568 | 0.8825 | 4500 | 2.0164 |
| 15.8856 | 0.9021 | 4600 | 2.0141 |
| 16.8868 | 0.9217 | 4700 | 2.0138 |
| 16.4577 | 0.9414 | 4800 | 2.0112 |
| 19.6963 | 0.9610 | 4900 | 2.0113 |
| 17.4742 | 0.9806 | 5000 | 2.0068 |
| 12.8209 | 1.0002 | 5100 | 2.0016 |
| 15.4832 | 1.0198 | 5200 | 2.0092 |
| 15.5734 | 1.0394 | 5300 | 2.0059 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/c9fe4bf0-c690-4c16-939a-e900e96b8da2
Base model
bigscience/bloomz-560m