BingoGuard-bert-large-base-benchmarks
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9187
- Accuracy: 0.8026
- F1: 0.7892
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.4037 | 1.0 | 856 | 0.3850 | 0.8282 | 0.8331 |
| 0.3242 | 2.0 | 1712 | 0.3815 | 0.8346 | 0.8346 |
| 0.2615 | 3.0 | 2568 | 0.4259 | 0.8307 | 0.8318 |
| 0.2397 | 4.0 | 3424 | 0.4942 | 0.8287 | 0.8245 |
| 0.2114 | 5.0 | 4280 | 0.5433 | 0.8243 | 0.8209 |
| 0.1708 | 6.0 | 5136 | 0.6266 | 0.8180 | 0.8087 |
| 0.1375 | 7.0 | 5992 | 0.7617 | 0.8115 | 0.8015 |
| 0.1066 | 8.0 | 6848 | 0.9187 | 0.8026 | 0.7892 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 3