Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from BookingCare/multilingual-e5-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BookingCare/multilingual-base-e5-v3.1")
# Run inference
sentences = [
'Có cách nào để cải thiện môi trường làm việc độc hại không?',
' Tương tự như chất độc trong không khí,\ncó thể gây hại cho sức khỏe tinh thần và thể chất của người lao động. Nếu bạn tiếp tục làm việc quá lâu, nó có thể dẫn đến mức độ căng thẳng cao, lòng tự trọng bị tụt giảm và bệnh lý trầm cảm. môi trường làm việc độc hại Nếu sự vấn đề đến từ lãnh đạo hoặc tư duy của công ty, bạn sẽ không thể làm được gì nhiều để cải thiện, tuy nhiên nếu vấn đề chỉ đến từ 1 hoặc 2 người, bạn có thể thảo luận với người quản lý đáng tin cậy hoặc nói chuyện với bộ phận nhân sự (HR). Sau đó, công ty có thể thuê trợ giúp từ bên ngoài như thông qua chương trình hỗ trợ nhân viên (EAP) để giúp giải quyết vấn đề. Nếu không có sự lựa chọn nào ngoài việc ở lại lúc này, hãy thử đặt mình vào một vỏ bọc nhỏ, cố gắng tránh mọi thị phi và giữ an tĩnh cho riêng mình. Tập trung vào các mục tiêu bên ngoài công việc và bắt đầu lập kế hoạch để thoát ra ngoài.',
' Chấn thương đầu, cổ, tủy sống rất nguy hiểm vì có thể gây mất vận động (liệt),\nhôn mê\nvà tử vong.\nChấn thương tủy sống\nlà nguyên nhân tổn thương thần kinh và gây ra\nkhó thở\n. hôn mê Chấn thương tủy sống khó thở Người bệnh bị chấn thương đầu, cổ, tủy sống cần được vận chuyển hết sức thận trọng. Bởi bất cứ vận động nào không phù hợp cũng có thể làm chấn thương nặng thêm như liệt tay hoặc chân. Nếu người bệnh không tỉnh, cần thực hiện hỗ trợ sự sống cơ bản.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
healthcare-devInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8483 |
| cosine_accuracy@3 | 0.9266 |
| cosine_accuracy@5 | 0.9465 |
| cosine_accuracy@10 | 0.9639 |
| cosine_precision@1 | 0.8483 |
| cosine_precision@3 | 0.3089 |
| cosine_precision@5 | 0.1893 |
| cosine_precision@10 | 0.0964 |
| cosine_recall@1 | 0.8483 |
| cosine_recall@3 | 0.9266 |
| cosine_recall@5 | 0.9465 |
| cosine_recall@10 | 0.9639 |
| cosine_ndcg@10 | 0.9104 |
| cosine_mrr@10 | 0.8928 |
| cosine_map@100 | 0.8943 |
| dot_accuracy@1 | 0.8483 |
| dot_accuracy@3 | 0.9266 |
| dot_accuracy@5 | 0.9465 |
| dot_accuracy@10 | 0.9639 |
| dot_precision@1 | 0.8483 |
| dot_precision@3 | 0.3089 |
| dot_precision@5 | 0.1893 |
| dot_precision@10 | 0.0964 |
| dot_recall@1 | 0.8483 |
| dot_recall@3 | 0.9266 |
| dot_recall@5 | 0.9465 |
| dot_recall@10 | 0.9639 |
| dot_ndcg@10 | 0.9104 |
| dot_mrr@10 | 0.8928 |
| dot_map@100 | 0.8943 |
healthcare-testInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6714 |
| cosine_accuracy@3 | 0.8209 |
| cosine_accuracy@5 | 0.865 |
| cosine_accuracy@10 | 0.8996 |
| cosine_precision@1 | 0.6714 |
| cosine_precision@3 | 0.2736 |
| cosine_precision@5 | 0.173 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.6714 |
| cosine_recall@3 | 0.8209 |
| cosine_recall@5 | 0.865 |
| cosine_recall@10 | 0.8996 |
| cosine_ndcg@10 | 0.7892 |
| cosine_mrr@10 | 0.7533 |
| cosine_map@100 | 0.7563 |
| dot_accuracy@1 | 0.6714 |
| dot_accuracy@3 | 0.8209 |
| dot_accuracy@5 | 0.865 |
| dot_accuracy@10 | 0.8996 |
| dot_precision@1 | 0.6714 |
| dot_precision@3 | 0.2736 |
| dot_precision@5 | 0.173 |
| dot_precision@10 | 0.09 |
| dot_recall@1 | 0.6714 |
| dot_recall@3 | 0.8209 |
| dot_recall@5 | 0.865 |
| dot_recall@10 | 0.8996 |
| dot_ndcg@10 | 0.7892 |
| dot_mrr@10 | 0.7533 |
| dot_map@100 | 0.7563 |
eval_strategy: stepsper_device_train_batch_size: 5per_device_eval_batch_size: 6learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 5per_device_eval_batch_size: 6per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss | healthcare-dev_cosine_map@100 | healthcare-test_cosine_map@100 |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.8140 | 0.6266 |
| 0.0126 | 100 | 0.1461 | 0.1289 | 0.8342 | - |
| 0.0251 | 200 | 0.1063 | 0.1130 | 0.8448 | - |
| 0.0377 | 300 | 0.1015 | 0.1008 | 0.8536 | - |
| 0.0502 | 400 | 0.086 | 0.0937 | 0.8586 | - |
| 0.0628 | 500 | 0.0824 | 0.0895 | 0.8654 | - |
| 0.0753 | 600 | 0.1008 | 0.0872 | 0.8669 | - |
| 0.0879 | 700 | 0.0755 | 0.0930 | 0.8658 | - |
| 0.1004 | 800 | 0.0968 | 0.0923 | 0.8683 | - |
| 0.1130 | 900 | 0.1011 | 0.0889 | 0.8677 | - |
| 0.1255 | 1000 | 0.0943 | 0.0805 | 0.8706 | - |
| 0.1381 | 1100 | 0.0668 | 0.0782 | 0.8660 | - |
| 0.1507 | 1200 | 0.0746 | 0.0814 | 0.8738 | - |
| 0.1632 | 1300 | 0.0825 | 0.0768 | 0.8728 | - |
| 0.1758 | 1400 | 0.0851 | 0.0860 | 0.8660 | - |
| 0.1883 | 1500 | 0.1029 | 0.0736 | 0.8752 | - |
| 0.2009 | 1600 | 0.071 | 0.0805 | 0.8760 | - |
| 0.2134 | 1700 | 0.081 | 0.0717 | 0.8731 | - |
| 0.2260 | 1800 | 0.0767 | 0.0698 | 0.8744 | - |
| 0.2385 | 1900 | 0.0895 | 0.0795 | 0.8705 | - |
| 0.2511 | 2000 | 0.0666 | 0.0740 | 0.8701 | - |
| 0.2637 | 2100 | 0.0791 | 0.0702 | 0.8733 | - |
| 0.2762 | 2200 | 0.0779 | 0.0797 | 0.8767 | - |
| 0.2888 | 2300 | 0.0812 | 0.0739 | 0.8790 | - |
| 0.3013 | 2400 | 0.0492 | 0.0754 | 0.8798 | - |
| 0.3139 | 2500 | 0.0442 | 0.0850 | 0.8722 | - |
| 0.3264 | 2600 | 0.0652 | 0.0901 | 0.8717 | - |
| 0.3390 | 2700 | 0.0579 | 0.0865 | 0.8733 | - |
| 0.3515 | 2800 | 0.0543 | 0.0945 | 0.8742 | - |
| 0.3641 | 2900 | 0.0639 | 0.0950 | 0.8678 | - |
| 0.3766 | 3000 | 0.0587 | 0.0824 | 0.8775 | - |
| 0.3892 | 3100 | 0.078 | 0.0864 | 0.8675 | - |
| 0.4018 | 3200 | 0.091 | 0.0686 | 0.8763 | - |
| 0.4143 | 3300 | 0.0763 | 0.0780 | 0.8734 | - |
| 0.4269 | 3400 | 0.0552 | 0.0842 | 0.8668 | - |
| 0.4394 | 3500 | 0.0549 | 0.0748 | 0.8748 | - |
| 0.4520 | 3600 | 0.0642 | 0.0755 | 0.8790 | - |
| 0.4645 | 3700 | 0.0796 | 0.0815 | 0.8650 | - |
| 0.4771 | 3800 | 0.0949 | 0.0755 | 0.8642 | - |
| 0.4896 | 3900 | 0.0783 | 0.0691 | 0.8698 | - |
| 0.5022 | 4000 | 0.0534 | 0.0655 | 0.8822 | - |
| 0.5148 | 4100 | 0.0453 | 0.0709 | 0.8742 | - |
| 0.5273 | 4200 | 0.0498 | 0.0612 | 0.8838 | - |
| 0.5399 | 4300 | 0.0903 | 0.0619 | 0.8795 | - |
| 0.5524 | 4400 | 0.0667 | 0.0712 | 0.8825 | - |
| 0.5650 | 4500 | 0.0364 | 0.0962 | 0.8722 | - |
| 0.5775 | 4600 | 0.0502 | 0.0706 | 0.8790 | - |
| 0.5901 | 4700 | 0.0685 | 0.0672 | 0.8788 | - |
| 0.6026 | 4800 | 0.0675 | 0.0695 | 0.8768 | - |
| 0.6152 | 4900 | 0.083 | 0.0680 | 0.8787 | - |
| 0.6277 | 5000 | 0.0598 | 0.0715 | 0.8769 | - |
| 0.6403 | 5100 | 0.0548 | 0.0710 | 0.8744 | - |
| 0.6529 | 5200 | 0.0682 | 0.0679 | 0.8855 | - |
| 0.6654 | 5300 | 0.0378 | 0.0779 | 0.8809 | - |
| 0.6780 | 5400 | 0.0274 | 0.0711 | 0.8864 | - |
| 0.6905 | 5500 | 0.0635 | 0.0699 | 0.8842 | - |
| 0.7031 | 5600 | 0.0681 | 0.0563 | 0.8867 | - |
| 0.7156 | 5700 | 0.0389 | 0.0595 | 0.8806 | - |
| 0.7282 | 5800 | 0.0419 | 0.0586 | 0.8796 | - |
| 0.7407 | 5900 | 0.0306 | 0.0520 | 0.8837 | - |
| 0.7533 | 6000 | 0.0418 | 0.0622 | 0.8759 | - |
| 0.7659 | 6100 | 0.0459 | 0.0691 | 0.8770 | - |
| 0.7784 | 6200 | 0.0616 | 0.0679 | 0.8818 | - |
| 0.7910 | 6300 | 0.0541 | 0.0658 | 0.8888 | - |
| 0.8035 | 6400 | 0.0742 | 0.0767 | 0.8890 | - |
| 0.8161 | 6500 | 0.0531 | 0.0675 | 0.8904 | - |
| 0.8286 | 6600 | 0.0513 | 0.0720 | 0.8909 | - |
| 0.8412 | 6700 | 0.0505 | 0.0722 | 0.8897 | - |
| 0.8537 | 6800 | 0.0451 | 0.0705 | 0.8895 | - |
| 0.8663 | 6900 | 0.0456 | 0.0704 | 0.8892 | - |
| 0.8788 | 7000 | 0.0506 | 0.0668 | 0.8901 | - |
| 0.8914 | 7100 | 0.0424 | 0.0556 | 0.8903 | - |
| 0.9040 | 7200 | 0.036 | 0.0602 | 0.8890 | - |
| 0.9165 | 7300 | 0.0545 | 0.0656 | 0.8886 | - |
| 0.9291 | 7400 | 0.0604 | 0.0695 | 0.8863 | - |
| 0.9416 | 7500 | 0.0362 | 0.0617 | 0.8909 | - |
| 0.9542 | 7600 | 0.0442 | 0.0666 | 0.8932 | - |
| 0.9667 | 7700 | 0.0398 | 0.0648 | 0.8886 | - |
| 0.9793 | 7800 | 0.0471 | 0.0654 | 0.8921 | - |
| 0.9918 | 7900 | 0.0716 | 0.0615 | 0.8933 | - |
| 1.0044 | 8000 | 0.0306 | 0.0735 | 0.8929 | - |
| 1.0169 | 8100 | 0.0601 | 0.0708 | 0.8927 | - |
| 1.0295 | 8200 | 0.041 | 0.0672 | 0.8939 | - |
| 1.0421 | 8300 | 0.0311 | 0.0693 | 0.8956 | - |
| 1.0546 | 8400 | 0.0508 | 0.0700 | 0.8984 | - |
| 1.0672 | 8500 | 0.0414 | 0.0640 | 0.8933 | - |
| 1.0797 | 8600 | 0.0451 | 0.0606 | 0.8943 | - |
| 1.0923 | 8700 | 0.0347 | 0.0668 | 0.8898 | - |
| 1.1048 | 8800 | 0.0413 | 0.0663 | 0.8965 | - |
| 1.1174 | 8900 | 0.0369 | 0.0641 | 0.8964 | - |
| 1.1299 | 9000 | 0.0252 | 0.0543 | 0.8925 | - |
| 1.1425 | 9100 | 0.0221 | 0.0529 | 0.8879 | - |
| 1.1551 | 9200 | 0.0306 | 0.0568 | 0.8951 | - |
| 1.1676 | 9300 | 0.0378 | 0.0616 | 0.8954 | - |
| 1.1802 | 9400 | 0.0338 | 0.0592 | 0.8913 | - |
| 1.1927 | 9500 | 0.0207 | 0.0565 | 0.8992 | - |
| 1.2053 | 9600 | 0.0259 | 0.0600 | 0.8962 | - |
| 1.2178 | 9700 | 0.0079 | 0.0655 | 0.8950 | - |
| 1.2304 | 9800 | 0.022 | 0.0660 | 0.8959 | - |
| 1.2429 | 9900 | 0.0296 | 0.0657 | 0.8960 | - |
| 1.2555 | 10000 | 0.0263 | 0.0667 | 0.8916 | - |
| 1.2680 | 10100 | 0.0184 | 0.0590 | 0.8951 | - |
| 1.2806 | 10200 | 0.0254 | 0.0587 | 0.8926 | - |
| 1.2932 | 10300 | 0.0213 | 0.0627 | 0.8896 | - |
| 1.3057 | 10400 | 0.0141 | 0.0655 | 0.8905 | - |
| 1.3183 | 10500 | 0.0077 | 0.0702 | 0.8910 | - |
| 1.3308 | 10600 | 0.0159 | 0.0700 | 0.8921 | - |
| 1.3434 | 10700 | 0.015 | 0.0674 | 0.8908 | - |
| 1.3559 | 10800 | 0.018 | 0.0698 | 0.8955 | - |
| 1.3685 | 10900 | 0.0156 | 0.0677 | 0.8908 | - |
| 1.3810 | 11000 | 0.0219 | 0.0666 | 0.8952 | - |
| 1.3936 | 11100 | 0.015 | 0.0640 | 0.8941 | - |
| 1.4062 | 11200 | 0.0231 | 0.0634 | 0.8916 | - |
| 1.4187 | 11300 | 0.0172 | 0.0679 | 0.8940 | - |
| 1.4313 | 11400 | 0.0228 | 0.0636 | 0.8925 | - |
| 1.4438 | 11500 | 0.0199 | 0.0655 | 0.8935 | - |
| 1.4564 | 11600 | 0.025 | 0.0687 | 0.8961 | - |
| 1.4689 | 11700 | 0.0277 | 0.0679 | 0.8922 | - |
| 1.4815 | 11800 | 0.0227 | 0.0672 | 0.8912 | - |
| 1.4940 | 11900 | 0.0222 | 0.0679 | 0.8914 | - |
| 1.5066 | 12000 | 0.0138 | 0.0656 | 0.8929 | - |
| 1.5191 | 12100 | 0.0107 | 0.0663 | 0.8916 | - |
| 1.5317 | 12200 | 0.0137 | 0.0580 | 0.8927 | - |
| 1.5443 | 12300 | 0.0311 | 0.0578 | 0.8948 | - |
| 1.5568 | 12400 | 0.0198 | 0.0621 | 0.8953 | - |
| 1.5694 | 12500 | 0.0084 | 0.0638 | 0.8950 | - |
| 1.5819 | 12600 | 0.0166 | 0.0600 | 0.8959 | - |
| 1.5945 | 12700 | 0.0251 | 0.0599 | 0.8928 | - |
| 1.6070 | 12800 | 0.0154 | 0.0624 | 0.8973 | - |
| 1.6196 | 12900 | 0.0301 | 0.0629 | 0.8937 | - |
| 1.6321 | 13000 | 0.0198 | 0.0616 | 0.8937 | - |
| 1.6447 | 13100 | 0.0146 | 0.0601 | 0.8914 | - |
| 1.6573 | 13200 | 0.0128 | 0.0610 | 0.8945 | - |
| 1.6698 | 13300 | 0.0092 | 0.0606 | 0.8920 | - |
| 1.6824 | 13400 | 0.0121 | 0.0595 | 0.8954 | - |
| 1.6949 | 13500 | 0.0183 | 0.0577 | 0.8918 | - |
| 1.7075 | 13600 | 0.0245 | 0.0572 | 0.8944 | - |
| 1.7200 | 13700 | 0.0166 | 0.0592 | 0.8931 | - |
| 1.7326 | 13800 | 0.0059 | 0.0593 | 0.8929 | - |
| 1.7451 | 13900 | 0.0087 | 0.0581 | 0.8918 | - |
| 1.7577 | 14000 | 0.0252 | 0.0595 | 0.8924 | - |
| 1.7702 | 14100 | 0.0165 | 0.0585 | 0.8976 | - |
| 1.7828 | 14200 | 0.022 | 0.0595 | 0.8976 | - |
| 1.7954 | 14300 | 0.0143 | 0.0602 | 0.8967 | - |
| 1.8079 | 14400 | 0.0328 | 0.0608 | 0.8974 | - |
| 1.8205 | 14500 | 0.0228 | 0.0597 | 0.8983 | - |
| 1.8330 | 14600 | 0.009 | 0.0594 | 0.8979 | - |
| 1.8456 | 14700 | 0.0188 | 0.0593 | 0.8952 | - |
| 1.8581 | 14800 | 0.0157 | 0.0583 | 0.8962 | - |
| 1.8707 | 14900 | 0.0116 | 0.0571 | 0.8969 | - |
| 1.8832 | 15000 | 0.0183 | 0.0559 | 0.8989 | - |
| 1.8958 | 15100 | 0.0118 | 0.0554 | 0.8972 | - |
| 1.9083 | 15200 | 0.0192 | 0.0559 | 0.8970 | - |
| 1.9209 | 15300 | 0.0109 | 0.0566 | 0.8957 | - |
| 1.9335 | 15400 | 0.0145 | 0.0566 | 0.8975 | - |
| 1.9460 | 15500 | 0.0131 | 0.0573 | 0.8965 | - |
| 1.9586 | 15600 | 0.0104 | 0.0575 | 0.8969 | - |
| 1.9711 | 15700 | 0.0185 | 0.0581 | 0.8961 | - |
| 1.9837 | 15800 | 0.0131 | 0.0579 | 0.8943 | - |
| 1.9962 | 15900 | 0.032 | 0.0576 | 0.8943 | - |
| 2.0 | 15930 | - | - | - | 0.7563 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
BookingCare/multilingual-e5-base-v2