res
This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3255
- Accuracy: 0.8795
- Precision Macro: 0.8847
- Recall Macro: 0.8717
- F1 Macro: 0.8777
- Precision Weighted: 0.8806
- Recall Weighted: 0.8795
- F1 Weighted: 0.8796
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.6874 | 1.0 | 532 | 0.4111 | 0.8495 | 0.8796 | 0.7902 | 0.8215 | 0.8576 | 0.8495 | 0.8480 |
| 0.2955 | 2.0 | 1064 | 0.3255 | 0.8795 | 0.8847 | 0.8717 | 0.8777 | 0.8806 | 0.8795 | 0.8796 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for Couter/res
Base model
google-bert/bert-base-multilingual-uncased