LLAMA 3 Story Point Estimator - usergrid
This model is fine-tuned on issue descriptions from usergrid and tested on usergrid for story point estimation.
Model Details
- Base Model: LLAMA 3.2 1B 
- Training Project: usergrid 
- Test Project: usergrid 
- Task: Story Point Estimation (Regression) 
- Architecture: PEFT (LoRA) 
- Input: Issue titles 
- Output: Story point estimation (continuous value) 
Usage
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftConfig, PeftModel
# Load peft config model
config = PeftConfig.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-usergrid")
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-usergrid")
base_model = AutoModelForSequenceClassification.from_pretrained(
    config.base_model_name_or_path,
    num_labels=1,
    torch_dtype=torch.float16,
    device_map='auto'
)
model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/0-LLAMA3SP-usergrid")
# Prepare input text
text = "Your issue description here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length")
# Get prediction
outputs = model(**inputs)
story_points = outputs.logits.item()
Training Details
- Fine-tuning method: LoRA (Low-Rank Adaptation)
- Sequence length: 20 tokens
- Best training epoch: 17 / 20 epochs
- Batch size: 32
- Training time: 301.615 seconds
- Mean Absolute Error (MAE): 1.765
- Median Absolute Error (MdAE): 1.583
Framework versions
- PEFT 0.14.0
- Downloads last month
- -
Model tree for DEVCamiloSepulveda/0-LLAMA3SP-usergrid
Base model
meta-llama/Llama-3.2-1BEvaluation results
- Mean Absolute Error (MAE) on usergrid Datasettest set self-reported1.765
- Median Absolute Error (MdAE) on usergrid Datasettest set self-reported1.583
