Core ML Whisper Large V3 Turbo (FP16)
Core ML export of openai/whisper-large-v3-turbo tuned for Apple Silicon. The bundle reflects the Option A1 configuration and reaches ~0.024 real-time factor (RTF) when DecoderWithCache.mlpackage is used.
Files
whisper-large-v3-turbo-coreml-fp16/Encoder.mlpackagewhisper-large-v3-turbo-coreml-fp16/DecoderWithCache.mlpackage(primary, tensor KV cache)whisper-large-v3-turbo-coreml-fp16/DecoderFull.mlpackage(fallback)whisper-large-v3-turbo-coreml-fp16/DecoderStateful.mlpackage(experimental MLState build)- Tokenizer + mel assets (
tokenizer.json,vocab.json,merges.txt,whisper_mel_filters.json, etc.) whisper-large-v3-turbo-coreml-fp16.tar.gzandwhisper-large-v3-turbo-coreml-fp16.sha256
Download & Verify
hf download DRTR-J/whisper-large-v3-turbo-coreml-fp16 whisper-large-v3-turbo-coreml-fp16.tar.gz
hf download DRTR-J/whisper-large-v3-turbo-coreml-fp16 whisper-large-v3-turbo-coreml-fp16.sha256
shasum -a 256 -c whisper-large-v3-turbo-coreml-fp16.sha256
tar -xzf whisper-large-v3-turbo-coreml-fp16.tar.gz
Usage
- Load
Encoder.mlpackageandDecoderWithCache.mlpackagewith Core ML (MLModel(contentsOf:),MLModelConfiguration(computeUnits: .cpuAndNeuralEngine)). - Feed the tokenizer assets into Hugging Face
AutoProcessor/tokenizersto maintain parity with the PyTorch reference. - Optionally fall back to:
DecoderFull.mlpackagefor non-cached decoding.DecoderStateful.mlpackagefor experimentation (ANE planner still returns error -14 on macOS 15 betas).
- Downloads last month
- 49
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support