File size: 1,693 Bytes
712c696 aaeb1b3 712c696 d21c378 712c696 d21c378 712c696 aaeb1b3 712c696 d21c378 712c696 d21c378 712c696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# Whisper Large V3 Turbo · Core ML (Option A1)
Optimized Core ML export of `openai/whisper-large-v3-turbo` targeting Apple Silicon. This repository distributes the production bundle used to reach ~0.024 real-time factor (RTF) described in the Option A1 implementation plan.
## Contents
- `whisper-large-v3-turbo-coreml-fp16/` – unpacked model bundle with encoder/decoder mlpackages, tokenizer assets, and metadata.
- `whisper-large-v3-turbo-coreml-fp16.tar.gz` – identical bundle packaged as a tarball for one-shot download.
- `whisper-large-v3-turbo-coreml-fp16.sha256` – checksum for the tarball.
Inside the directory you will find:
- `Encoder.mlpackage`
- `DecoderWithCache.mlpackage` (primary, tensor-cache decoder)
- `DecoderFull.mlpackage` (fallback)
- `DecoderStateful.mlpackage` (experimental; see note below)
- Tokenizer + mel filter assets and metadata JSON files
- `README.md` and `MODEL_CARD.md` with usage and performance details
## Usage
1. Download the snapshot via `huggingface-cli` or `snapshot_download`:
```python
from huggingface_hub import snapshot_download
model_path = snapshot_download("DRTR-J/whisper-large-v3-turbo-coreml-fp16")
```
2. Point your Core ML integration (Swift, Rust, Tauri, etc.) at `DecoderWithCache.mlpackage` to achieve the advertised RTF ≈ 0.024 on Apple Silicon.
3. The experimental `DecoderStateful.mlpackage` is included for completeness but still fails ANE planning (Core ML error -14); keep it disabled in production.
For full background and performance tables, consult `whisper-large-v3-turbo-coreml-fp16/MODEL_CARD.md`.
## License
- Base weights: OpenAI Whisper license
- Packaging and auxiliary assets: MIT
|