See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
    type: sharegpt
    conversation: chatml
#  - path: NewEden/vanilla-backrooms-claude-sharegpt
#    type: sharegpt
#    conversation: chatml
  - path: anthracite-org/kalo_opus_misc_240827
    type: sharegpt
    conversation: chatml
    type: sharegpt
    conversation: chatml
  - path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
    type: sharegpt
    conversation: chatml
  - path: AquaV/Energetic-Materials-Sharegpt
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/NopmWritingStruct
    type: sharegpt
    conversation: chatml
  - path: NewEden/Claude-Instruct-5k
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml
  - path: NewEden/Stheno-Data-filtered-8k-subset
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT
    type: sharegpt
    conversation: chatml
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./outputs/Qwen7b
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: henbane 7b-attempt2
wandb_entity:
wandb_watch:
wandb_name: henbane 7b-attempt2
wandb_log_model:
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.5
special_tokens:
outputs/Qwen7b
This model is a fine-tuned version of Qwen/Qwen2-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0222
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 1
 - eval_batch_size: 1
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 2
 - gradient_accumulation_steps: 32
 - total_train_batch_size: 64
 - total_eval_batch_size: 2
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - num_epochs: 2
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 1.4212 | 0.0077 | 1 | 1.4377 | 
| 1.1822 | 0.2543 | 33 | 1.1101 | 
| 1.1671 | 0.5085 | 66 | 1.0674 | 
| 1.1008 | 0.7628 | 99 | 1.0414 | 
| 1.004 | 1.0019 | 132 | 1.0255 | 
| 0.8963 | 1.2562 | 165 | 1.0312 | 
| 0.8914 | 1.5105 | 198 | 1.0255 | 
| 0.8788 | 1.7647 | 231 | 1.0222 | 
Framework versions
- Transformers 4.45.0.dev0
 - Pytorch 2.4.0+cu121
 - Datasets 2.19.1
 - Tokenizers 0.19.1
 
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 23.47 | 
| IFEval (0-Shot) | 41.57 | 
| BBH (3-Shot) | 30.87 | 
| MATH Lvl 5 (4-Shot) | 20.69 | 
| GPQA (0-shot) | 5.37 | 
| MuSR (0-shot) | 8.70 | 
| MMLU-PRO (5-shot) | 33.64 | 
- Downloads last month
 - 10