DataVortex Models
					Collection
				
				21 items
				β’ 
				Updated
					
				
| Research & Engineering | Product Management | 
|---|---|
| Kwangseok Yang | Seunghyun Choi | 
| Jeongwon Choi | Hyoseok Choi | 
It follows ChatML format.
E.g.
text = """\
<|im_start|>system
λΉμ μ μ¬λλ€μ΄ μ λ³΄λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.<|im_end|>
<|im_start|>user
λνλ―Όκ΅μ μλλ μ΄λμΌ?<|im_end|>
<|im_start|>assistant
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.<|im_end|>
<|im_start|>user
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?<|im_end|>
<|im_start|>assistant
"""
| Task | 0-shot | 5-shot | 10-shot | 50-shot | 
|---|---|---|---|---|
| kobest_boolq | 0.920118 | 0.92442 | 0.929443 | 0.927317 | 
| kobest_copa | 0.727263 | 0.778936 | 0.804812 | 0.815761 | 
| kobest_hellaswag | 0.433039 | 0.465922 | 0.459741 | 0.471022 | 
| kobest_sentineg | 0.764909 | 0.93946 | 0.937002 | 0.931962 | 
| Average | 0.711332 | 0.777185 | 0.78275 | 0.786516 | 
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | 
|---|---|---|---|---|---|
| 59.22 | 53.84 | 67.9 | 52.37 | 64.6 | 57.38 | 
This model contains the chat_template instruction format.
You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6")
messages = [
    {"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ λ³΄λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
    {"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
    {"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
    {"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
The model is licensed under the cc-by-nc-sa-4.0 license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.