SepLLM - ICML 2025
Collection
The related code & checkpoints for [SepLLM - ICML 2025](https://arxiv.org/abs/2412.12094) paper.
•
8 items
•
Updated
•
1
Please refer to the SepLLM paper - ICML 2025 and our GitHub repository for using this model.
To use the checkpoint of this model, you must install the transformers-4.38.0.post1+sepllm-py3-none-any.whl released from our GitHub repository. Below are the reference script for testing and a sample of test results. We conducted testing using lm_eval==0.4.0.
CUDA_LAUNCH_BLOCKING=1
lm_eval --model hf \
--model_args pretrained=Gausson/pythia-160m-deduped-n64h-SepLLM \
--tasks arc_challenge,arc_easy,lambada_openai,logiqa,piqa,sciq,winogrande,wsc,wikitext \
--num_fewshot 5 \
--device cuda:0\
--batch_size 32
hf (pretrained=Gausson/pythia-160m-deduped-n64h-SepLLM), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 32
| Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr|
|--------------|------:|------|-----:|---------------|---|------:|---|------|
|arc_challenge | 1|none | 5|acc |↑ | 0.2073|± |0.0118|
| | |none | 5|acc_norm |↑ | 0.2432|± |0.0125|
|arc_easy | 1|none | 5|acc |↑ | 0.4844|± |0.0103|
| | |none | 5|acc_norm |↑ | 0.4516|± |0.0102|
|lambada_openai| 1|none | 5|acc |↑ | 0.3047|± |0.0064|
| | |none | 5|perplexity |↓ |36.5298|± |1.2471|
|logiqa | 1|none | 5|acc |↑ | 0.2535|± |0.0171|
| | |none | 5|acc_norm |↑ | 0.2596|± |0.0172|
|piqa | 1|none | 5|acc |↑ | 0.6442|± |0.0112|
| | |none | 5|acc_norm |↑ | 0.6398|± |0.0112|
|sciq | 1|none | 5|acc |↑ | 0.8060|± |0.0125|
| | |none | 5|acc_norm |↑ | 0.7910|± |0.0129|
|wikitext | 2|none | 5|bits_per_byte |↓ | 0.9217|± | N/A|
| | |none | 5|byte_perplexity|↓ | 1.8943|± | N/A|
| | |none | 5|word_perplexity|↓ |30.4533|± | N/A|
|winogrande | 1|none | 5|acc |↑ | 0.5146|± |0.0140|
|wsc | 1|none | 5|acc |↑ | 0.3846|± |0.0479|
If you find our work helpful, please consider giving us a star ⭐ @ our GitHub repository and citing our paper. We greatly appreciate your support 😄
@inproceedings{chen2025sepllm,
title={{SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator}},
author={Chen, Guoxuan and Shi, Han and Li, Jiawei and Gao, Yihang and Ren, Xiaozhe and Chen, Yimeng and Jiang, Xin and Li, Zhenguo and Liu, Weiyang and Huang, Chao},
booktitle={International Conference on Machine Learning},
year={2025},
note={Also available at arXiv:2412.12094}
}