layoutlmv3-finetuned-invoice_ConControl_Easy2_cosine_w_r005_w_d01
This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0489
- Precision: 0.9664
- Recall: 0.6995
- F1: 0.8116
- Accuracy: 0.7058
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.2115 | 1.0 | 199 | 0.1916 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.1031 | 2.0 | 398 | 0.0947 | 0.8443 | 0.4366 | 0.5756 | 0.4440 |
| 0.0544 | 3.0 | 597 | 0.0634 | 0.9580 | 0.5541 | 0.7021 | 0.5660 |
| 0.0365 | 4.0 | 796 | 0.0489 | 0.9664 | 0.6995 | 0.8116 | 0.7058 |
| 0.0316 | 5.0 | 995 | 0.0637 | 0.9686 | 0.6259 | 0.7605 | 0.6362 |
| 0.0291 | 6.0 | 1194 | 0.0651 | 0.9765 | 0.6016 | 0.7445 | 0.6145 |
| 0.0254 | 7.0 | 1393 | 0.0710 | 0.9778 | 0.6132 | 0.7537 | 0.6262 |
| 0.0219 | 8.0 | 1592 | 0.0619 | 0.9766 | 0.6288 | 0.7651 | 0.6418 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu118
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Giannis17/layoutlmv3-finetuned-invoice_ConControl_Easy2_cosine_w_r005_w_d01
Base model
microsoft/layoutlmv3-base