metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
The TCS software shall have an open architecture and be capable of being
hosted on computers that are typically supported by the using Service.
- text: >-
3 It shall be possible to deregister up to ten functional numbers to items
of equipment physically connected to the Cab radio within 30 seconds. (M)
- text: >-
1 The EIRENE system shall enable users to originate and receive calls by
functional number. (M)
- text: The product shall store new conference rooms.
- text: >-
Before authomatic transition to Shunting, ETCS shall request confirmation
from the driver.
metrics:
- micro_f1
- macro_f1
- hamming_accuracy
- subset_accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: micro_f1
value: 0.5631067961165048
name: Micro_F1
- type: macro_f1
value: 0.5741774726671751
name: Macro_F1
- type: hamming_accuracy
value: 0.8888888888888888
name: Hamming_Accuracy
- type: subset_accuracy
value: 0.5637860082304527
name: Subset_Accuracy
SetFit
This is a SetFit model that can be used for Text Classification. A WeightedBinaryRelevanceHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a WeightedBinaryRelevanceHead instance
- Maximum Sequence Length: 256 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
| Label | Micro_F1 | Macro_F1 | Hamming_Accuracy | Subset_Accuracy |
|---|---|---|---|---|
| all | 0.5631 | 0.5742 | 0.8889 | 0.5638 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Hulyyy/req-quality-setfit-128")
# Run inference
preds = model("The product shall store new conference rooms.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 19.3840 | 32 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 200
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 1e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0001 | 1 | 0.3722 | - |
| 0.0070 | 50 | 0.3592 | - |
| 0.0141 | 100 | 0.3552 | - |
| 0.0211 | 150 | 0.3271 | - |
| 0.0281 | 200 | 0.3016 | - |
| 0.0351 | 250 | 0.2783 | - |
| 0.0422 | 300 | 0.2642 | - |
| 0.0492 | 350 | 0.2587 | - |
| 0.0562 | 400 | 0.2568 | - |
| 0.0633 | 450 | 0.257 | - |
| 0.0703 | 500 | 0.2498 | - |
| 0.0773 | 550 | 0.2444 | - |
| 0.0844 | 600 | 0.2437 | - |
| 0.0914 | 650 | 0.2399 | - |
| 0.0984 | 700 | 0.2371 | - |
| 0.1054 | 750 | 0.2302 | - |
| 0.1125 | 800 | 0.2291 | - |
| 0.1195 | 850 | 0.2233 | - |
| 0.1265 | 900 | 0.2192 | - |
| 0.1336 | 950 | 0.2229 | - |
| 0.1406 | 1000 | 0.218 | - |
| 0.1476 | 1050 | 0.2096 | - |
| 0.1546 | 1100 | 0.2107 | - |
| 0.1617 | 1150 | 0.202 | - |
| 0.1687 | 1200 | 0.2009 | - |
| 0.1757 | 1250 | 0.1975 | - |
| 0.1828 | 1300 | 0.1969 | - |
| 0.1898 | 1350 | 0.1955 | - |
| 0.1968 | 1400 | 0.1871 | - |
| 0.2039 | 1450 | 0.1837 | - |
| 0.2109 | 1500 | 0.1732 | - |
| 0.2179 | 1550 | 0.1702 | - |
| 0.2249 | 1600 | 0.1687 | - |
| 0.2320 | 1650 | 0.16 | - |
| 0.2390 | 1700 | 0.1551 | - |
| 0.2460 | 1750 | 0.1495 | - |
| 0.2531 | 1800 | 0.1386 | - |
| 0.2601 | 1850 | 0.1339 | - |
| 0.2671 | 1900 | 0.1263 | - |
| 0.2741 | 1950 | 0.1232 | - |
| 0.2812 | 2000 | 0.1209 | - |
| 0.2882 | 2050 | 0.112 | - |
| 0.2952 | 2100 | 0.0995 | - |
| 0.3023 | 2150 | 0.0932 | - |
| 0.3093 | 2200 | 0.0869 | - |
| 0.3163 | 2250 | 0.076 | - |
| 0.3234 | 2300 | 0.0656 | - |
| 0.3304 | 2350 | 0.067 | - |
| 0.3374 | 2400 | 0.0602 | - |
| 0.3444 | 2450 | 0.0561 | - |
| 0.3515 | 2500 | 0.0532 | - |
| 0.3585 | 2550 | 0.0465 | - |
| 0.3655 | 2600 | 0.0443 | - |
| 0.3726 | 2650 | 0.0443 | - |
| 0.3796 | 2700 | 0.0435 | - |
| 0.3866 | 2750 | 0.0392 | - |
| 0.3936 | 2800 | 0.0417 | - |
| 0.4007 | 2850 | 0.0354 | - |
| 0.4077 | 2900 | 0.0379 | - |
| 0.4147 | 2950 | 0.037 | - |
| 0.4218 | 3000 | 0.0366 | - |
| 0.4288 | 3050 | 0.0328 | - |
| 0.4358 | 3100 | 0.032 | - |
| 0.4429 | 3150 | 0.027 | - |
| 0.4499 | 3200 | 0.0329 | - |
| 0.4569 | 3250 | 0.026 | - |
| 0.4639 | 3300 | 0.0284 | - |
| 0.4710 | 3350 | 0.0274 | - |
| 0.4780 | 3400 | 0.0264 | - |
| 0.4850 | 3450 | 0.0239 | - |
| 0.4921 | 3500 | 0.0256 | - |
| 0.4991 | 3550 | 0.0256 | - |
| 0.5061 | 3600 | 0.024 | - |
| 0.5131 | 3650 | 0.0223 | - |
| 0.5202 | 3700 | 0.0225 | - |
| 0.5272 | 3750 | 0.0245 | - |
| 0.5342 | 3800 | 0.0224 | - |
| 0.5413 | 3850 | 0.0226 | - |
| 0.5483 | 3900 | 0.0213 | - |
| 0.5553 | 3950 | 0.0207 | - |
| 0.5624 | 4000 | 0.0177 | - |
| 0.5694 | 4050 | 0.023 | - |
| 0.5764 | 4100 | 0.0203 | - |
| 0.5834 | 4150 | 0.0194 | - |
| 0.5905 | 4200 | 0.0183 | - |
| 0.5975 | 4250 | 0.0182 | - |
| 0.6045 | 4300 | 0.0164 | - |
| 0.6116 | 4350 | 0.0159 | - |
| 0.6186 | 4400 | 0.0147 | - |
| 0.6256 | 4450 | 0.0135 | - |
| 0.6326 | 4500 | 0.0131 | - |
| 0.6397 | 4550 | 0.0111 | - |
| 0.6467 | 4600 | 0.012 | - |
| 0.6537 | 4650 | 0.011 | - |
| 0.6608 | 4700 | 0.0119 | - |
| 0.6678 | 4750 | 0.0113 | - |
| 0.6748 | 4800 | 0.0107 | - |
| 0.6819 | 4850 | 0.0092 | - |
| 0.6889 | 4900 | 0.0097 | - |
| 0.6959 | 4950 | 0.0087 | - |
| 0.7029 | 5000 | 0.0082 | - |
| 0.7100 | 5050 | 0.01 | - |
| 0.7170 | 5100 | 0.0094 | - |
| 0.7240 | 5150 | 0.0081 | - |
| 0.7311 | 5200 | 0.0073 | - |
| 0.7381 | 5250 | 0.0069 | - |
| 0.7451 | 5300 | 0.0067 | - |
| 0.7521 | 5350 | 0.0072 | - |
| 0.7592 | 5400 | 0.0067 | - |
| 0.7662 | 5450 | 0.008 | - |
| 0.7732 | 5500 | 0.0072 | - |
| 0.7803 | 5550 | 0.0059 | - |
| 0.7873 | 5600 | 0.0059 | - |
| 0.7943 | 5650 | 0.0062 | - |
| 0.8013 | 5700 | 0.0068 | - |
| 0.8084 | 5750 | 0.0066 | - |
| 0.8154 | 5800 | 0.007 | - |
| 0.8224 | 5850 | 0.0057 | - |
| 0.8295 | 5900 | 0.0063 | - |
| 0.8365 | 5950 | 0.0062 | - |
| 0.8435 | 6000 | 0.0057 | - |
| 0.8506 | 6050 | 0.0051 | - |
| 0.8576 | 6100 | 0.0055 | - |
| 0.8646 | 6150 | 0.0046 | - |
| 0.8716 | 6200 | 0.0066 | - |
| 0.8787 | 6250 | 0.0054 | - |
| 0.8857 | 6300 | 0.004 | - |
| 0.8927 | 6350 | 0.0047 | - |
| 0.8998 | 6400 | 0.0044 | - |
| 0.9068 | 6450 | 0.004 | - |
| 0.9138 | 6500 | 0.005 | - |
| 0.9208 | 6550 | 0.0043 | - |
| 0.9279 | 6600 | 0.0039 | - |
| 0.9349 | 6650 | 0.0053 | - |
| 0.9419 | 6700 | 0.0039 | - |
| 0.9490 | 6750 | 0.0043 | - |
| 0.9560 | 6800 | 0.0045 | - |
| 0.9630 | 6850 | 0.0044 | - |
| 0.9701 | 6900 | 0.0041 | - |
| 0.9771 | 6950 | 0.0033 | - |
| 0.9841 | 7000 | 0.0031 | - |
| 0.9911 | 7050 | 0.0031 | - |
| 0.9982 | 7100 | 0.0039 | - |
| 1.0052 | 7150 | 0.0041 | - |
| 1.0122 | 7200 | 0.0026 | - |
| 1.0193 | 7250 | 0.0035 | - |
| 1.0263 | 7300 | 0.0032 | - |
| 1.0333 | 7350 | 0.0033 | - |
| 1.0403 | 7400 | 0.003 | - |
| 1.0474 | 7450 | 0.0025 | - |
| 1.0544 | 7500 | 0.0028 | - |
| 1.0614 | 7550 | 0.0027 | - |
| 1.0685 | 7600 | 0.0024 | - |
| 1.0755 | 7650 | 0.0026 | - |
| 1.0825 | 7700 | 0.0024 | - |
| 1.0896 | 7750 | 0.003 | - |
| 1.0966 | 7800 | 0.0024 | - |
| 1.1036 | 7850 | 0.0028 | - |
| 1.1106 | 7900 | 0.0023 | - |
| 1.1177 | 7950 | 0.0021 | - |
| 1.1247 | 8000 | 0.0028 | - |
| 1.1317 | 8050 | 0.0017 | - |
| 1.1388 | 8100 | 0.0022 | - |
| 1.1458 | 8150 | 0.0028 | - |
| 1.1528 | 8200 | 0.0019 | - |
| 1.1598 | 8250 | 0.002 | - |
| 1.1669 | 8300 | 0.0025 | - |
| 1.1739 | 8350 | 0.0027 | - |
| 1.1809 | 8400 | 0.0025 | - |
| 1.1880 | 8450 | 0.0018 | - |
| 1.1950 | 8500 | 0.0024 | - |
| 1.2020 | 8550 | 0.002 | - |
| 1.2091 | 8600 | 0.002 | - |
| 1.2161 | 8650 | 0.0019 | - |
| 1.2231 | 8700 | 0.0016 | - |
| 1.2301 | 8750 | 0.0018 | - |
| 1.2372 | 8800 | 0.0015 | - |
| 1.2442 | 8850 | 0.0017 | - |
| 1.2512 | 8900 | 0.0017 | - |
| 1.2583 | 8950 | 0.0019 | - |
| 1.2653 | 9000 | 0.0014 | - |
| 1.2723 | 9050 | 0.0016 | - |
| 1.2793 | 9100 | 0.0014 | - |
| 1.2864 | 9150 | 0.0017 | - |
| 1.2934 | 9200 | 0.0015 | - |
| 1.3004 | 9250 | 0.001 | - |
| 1.3075 | 9300 | 0.0017 | - |
| 1.3145 | 9350 | 0.0014 | - |
| 1.3215 | 9400 | 0.0013 | - |
| 1.3286 | 9450 | 0.0012 | - |
| 1.3356 | 9500 | 0.001 | - |
| 1.3426 | 9550 | 0.0014 | - |
| 1.3496 | 9600 | 0.0011 | - |
| 1.3567 | 9650 | 0.0012 | - |
| 1.3637 | 9700 | 0.0012 | - |
| 1.3707 | 9750 | 0.002 | - |
| 1.3778 | 9800 | 0.0012 | - |
| 1.3848 | 9850 | 0.0012 | - |
| 1.3918 | 9900 | 0.0016 | - |
| 1.3988 | 9950 | 0.0014 | - |
| 1.4059 | 10000 | 0.0011 | - |
| 1.4129 | 10050 | 0.0012 | - |
| 1.4199 | 10100 | 0.0013 | - |
| 1.4270 | 10150 | 0.0011 | - |
| 1.4340 | 10200 | 0.001 | - |
| 1.4410 | 10250 | 0.0016 | - |
| 1.4481 | 10300 | 0.0012 | - |
| 1.4551 | 10350 | 0.0012 | - |
| 1.4621 | 10400 | 0.0015 | - |
| 1.4691 | 10450 | 0.0014 | - |
| 1.4762 | 10500 | 0.0017 | - |
| 1.4832 | 10550 | 0.0019 | - |
| 1.4902 | 10600 | 0.0013 | - |
| 1.4973 | 10650 | 0.0012 | - |
| 1.5043 | 10700 | 0.0015 | - |
| 1.5113 | 10750 | 0.0012 | - |
| 1.5183 | 10800 | 0.0011 | - |
| 1.5254 | 10850 | 0.0015 | - |
| 1.5324 | 10900 | 0.001 | - |
| 1.5394 | 10950 | 0.001 | - |
| 1.5465 | 11000 | 0.0008 | - |
| 1.5535 | 11050 | 0.0014 | - |
| 1.5605 | 11100 | 0.0011 | - |
| 1.5676 | 11150 | 0.0014 | - |
| 1.5746 | 11200 | 0.0013 | - |
| 1.5816 | 11250 | 0.0008 | - |
| 1.5886 | 11300 | 0.001 | - |
| 1.5957 | 11350 | 0.0009 | - |
| 1.6027 | 11400 | 0.0014 | - |
| 1.6097 | 11450 | 0.0008 | - |
| 1.6168 | 11500 | 0.0014 | - |
| 1.6238 | 11550 | 0.0011 | - |
| 1.6308 | 11600 | 0.0015 | - |
| 1.6378 | 11650 | 0.0011 | - |
| 1.6449 | 11700 | 0.0006 | - |
| 1.6519 | 11750 | 0.0015 | - |
| 1.6589 | 11800 | 0.0015 | - |
| 1.6660 | 11850 | 0.0012 | - |
| 1.6730 | 11900 | 0.0008 | - |
| 1.6800 | 11950 | 0.0007 | - |
| 1.6871 | 12000 | 0.0011 | - |
| 1.6941 | 12050 | 0.0008 | - |
| 1.7011 | 12100 | 0.001 | - |
| 1.7081 | 12150 | 0.0008 | - |
| 1.7152 | 12200 | 0.0008 | - |
| 1.7222 | 12250 | 0.0011 | - |
| 1.7292 | 12300 | 0.0018 | - |
| 1.7363 | 12350 | 0.0007 | - |
| 1.7433 | 12400 | 0.0011 | - |
| 1.7503 | 12450 | 0.0006 | - |
| 1.7573 | 12500 | 0.0007 | - |
| 1.7644 | 12550 | 0.0012 | - |
| 1.7714 | 12600 | 0.001 | - |
| 1.7784 | 12650 | 0.0009 | - |
| 1.7855 | 12700 | 0.0009 | - |
| 1.7925 | 12750 | 0.0008 | - |
| 1.7995 | 12800 | 0.0009 | - |
| 1.8066 | 12850 | 0.0009 | - |
| 1.8136 | 12900 | 0.0013 | - |
| 1.8206 | 12950 | 0.0009 | - |
| 1.8276 | 13000 | 0.0011 | - |
| 1.8347 | 13050 | 0.0009 | - |
| 1.8417 | 13100 | 0.0007 | - |
| 1.8487 | 13150 | 0.0009 | - |
| 1.8558 | 13200 | 0.0008 | - |
| 1.8628 | 13250 | 0.0008 | - |
| 1.8698 | 13300 | 0.0006 | - |
| 1.8768 | 13350 | 0.0008 | - |
| 1.8839 | 13400 | 0.0007 | - |
| 1.8909 | 13450 | 0.0009 | - |
| 1.8979 | 13500 | 0.0005 | - |
| 1.9050 | 13550 | 0.0004 | - |
| 1.9120 | 13600 | 0.0014 | - |
| 1.9190 | 13650 | 0.0009 | - |
| 1.9261 | 13700 | 0.0009 | - |
| 1.9331 | 13750 | 0.001 | - |
| 1.9401 | 13800 | 0.0007 | - |
| 1.9471 | 13850 | 0.0011 | - |
| 1.9542 | 13900 | 0.0009 | - |
| 1.9612 | 13950 | 0.0005 | - |
| 1.9682 | 14000 | 0.0004 | - |
| 1.9753 | 14050 | 0.0007 | - |
| 1.9823 | 14100 | 0.0007 | - |
| 1.9893 | 14150 | 0.0006 | - |
| 1.9963 | 14200 | 0.0008 | - |
| 2.0034 | 14250 | 0.0005 | - |
| 2.0104 | 14300 | 0.0009 | - |
| 2.0174 | 14350 | 0.0004 | - |
| 2.0245 | 14400 | 0.0007 | - |
| 2.0315 | 14450 | 0.0007 | - |
| 2.0385 | 14500 | 0.0005 | - |
| 2.0456 | 14550 | 0.0007 | - |
| 2.0526 | 14600 | 0.0005 | - |
| 2.0596 | 14650 | 0.0004 | - |
| 2.0666 | 14700 | 0.0006 | - |
| 2.0737 | 14750 | 0.0007 | - |
| 2.0807 | 14800 | 0.0008 | - |
| 2.0877 | 14850 | 0.0009 | - |
| 2.0948 | 14900 | 0.0003 | - |
| 2.1018 | 14950 | 0.0006 | - |
| 2.1088 | 15000 | 0.0006 | - |
| 2.1158 | 15050 | 0.0007 | - |
| 2.1229 | 15100 | 0.0007 | - |
| 2.1299 | 15150 | 0.001 | - |
| 2.1369 | 15200 | 0.0006 | - |
| 2.1440 | 15250 | 0.0005 | - |
| 2.1510 | 15300 | 0.0008 | - |
| 2.1580 | 15350 | 0.0004 | - |
| 2.1650 | 15400 | 0.0006 | - |
| 2.1721 | 15450 | 0.0006 | - |
| 2.1791 | 15500 | 0.0008 | - |
| 2.1861 | 15550 | 0.0003 | - |
| 2.1932 | 15600 | 0.001 | - |
| 2.2002 | 15650 | 0.0005 | - |
| 2.2072 | 15700 | 0.0006 | - |
| 2.2143 | 15750 | 0.0005 | - |
| 2.2213 | 15800 | 0.0006 | - |
| 2.2283 | 15850 | 0.0005 | - |
| 2.2353 | 15900 | 0.0006 | - |
| 2.2424 | 15950 | 0.0003 | - |
| 2.2494 | 16000 | 0.0005 | - |
| 2.2564 | 16050 | 0.0005 | - |
| 2.2635 | 16100 | 0.0006 | - |
| 2.2705 | 16150 | 0.0006 | - |
| 2.2775 | 16200 | 0.0006 | - |
| 2.2845 | 16250 | 0.0005 | - |
| 2.2916 | 16300 | 0.0006 | - |
| 2.2986 | 16350 | 0.0004 | - |
| 2.3056 | 16400 | 0.0006 | - |
| 2.3127 | 16450 | 0.0004 | - |
| 2.3197 | 16500 | 0.0004 | - |
| 2.3267 | 16550 | 0.0007 | - |
| 2.3338 | 16600 | 0.0006 | - |
| 2.3408 | 16650 | 0.0004 | - |
| 2.3478 | 16700 | 0.0007 | - |
| 2.3548 | 16750 | 0.0009 | - |
| 2.3619 | 16800 | 0.0005 | - |
| 2.3689 | 16850 | 0.0005 | - |
| 2.3759 | 16900 | 0.0007 | - |
| 2.3830 | 16950 | 0.0005 | - |
| 2.3900 | 17000 | 0.0005 | - |
| 2.3970 | 17050 | 0.0008 | - |
| 2.4040 | 17100 | 0.0005 | - |
| 2.4111 | 17150 | 0.0004 | - |
| 2.4181 | 17200 | 0.0004 | - |
| 2.4251 | 17250 | 0.0006 | - |
| 2.4322 | 17300 | 0.0007 | - |
| 2.4392 | 17350 | 0.0005 | - |
| 2.4462 | 17400 | 0.0004 | - |
| 2.4533 | 17450 | 0.0003 | - |
| 2.4603 | 17500 | 0.0004 | - |
| 2.4673 | 17550 | 0.0008 | - |
| 2.4743 | 17600 | 0.0003 | - |
| 2.4814 | 17650 | 0.0006 | - |
| 2.4884 | 17700 | 0.0003 | - |
| 2.4954 | 17750 | 0.0004 | - |
| 2.5025 | 17800 | 0.0005 | - |
| 2.5095 | 17850 | 0.0004 | - |
| 2.5165 | 17900 | 0.0004 | - |
| 2.5235 | 17950 | 0.0003 | - |
| 2.5306 | 18000 | 0.0005 | - |
| 2.5376 | 18050 | 0.0005 | - |
| 2.5446 | 18100 | 0.0005 | - |
| 2.5517 | 18150 | 0.0004 | - |
| 2.5587 | 18200 | 0.0003 | - |
| 2.5657 | 18250 | 0.0007 | - |
| 2.5728 | 18300 | 0.0006 | - |
| 2.5798 | 18350 | 0.0004 | - |
| 2.5868 | 18400 | 0.0005 | - |
| 2.5938 | 18450 | 0.0006 | - |
| 2.6009 | 18500 | 0.0006 | - |
| 2.6079 | 18550 | 0.0006 | - |
| 2.6149 | 18600 | 0.0003 | - |
| 2.6220 | 18650 | 0.0003 | - |
| 2.6290 | 18700 | 0.0003 | - |
| 2.6360 | 18750 | 0.0004 | - |
| 2.6430 | 18800 | 0.0003 | - |
| 2.6501 | 18850 | 0.0005 | - |
| 2.6571 | 18900 | 0.0006 | - |
| 2.6641 | 18950 | 0.0003 | - |
| 2.6712 | 19000 | 0.0007 | - |
| 2.6782 | 19050 | 0.0002 | - |
| 2.6852 | 19100 | 0.0003 | - |
| 2.6923 | 19150 | 0.0004 | - |
| 2.6993 | 19200 | 0.0005 | - |
| 2.7063 | 19250 | 0.0004 | - |
| 2.7133 | 19300 | 0.0004 | - |
| 2.7204 | 19350 | 0.0006 | - |
| 2.7274 | 19400 | 0.0003 | - |
| 2.7344 | 19450 | 0.0002 | - |
| 2.7415 | 19500 | 0.0003 | - |
| 2.7485 | 19550 | 0.0004 | - |
| 2.7555 | 19600 | 0.0005 | - |
| 2.7625 | 19650 | 0.0004 | - |
| 2.7696 | 19700 | 0.0007 | - |
| 2.7766 | 19750 | 0.0003 | - |
| 2.7836 | 19800 | 0.0004 | - |
| 2.7907 | 19850 | 0.0006 | - |
| 2.7977 | 19900 | 0.0005 | - |
| 2.8047 | 19950 | 0.0004 | - |
| 2.8118 | 20000 | 0.0003 | - |
| 2.8188 | 20050 | 0.0007 | - |
| 2.8258 | 20100 | 0.0005 | - |
| 2.8328 | 20150 | 0.0006 | - |
| 2.8399 | 20200 | 0.0003 | - |
| 2.8469 | 20250 | 0.0008 | - |
| 2.8539 | 20300 | 0.0004 | - |
| 2.8610 | 20350 | 0.0007 | - |
| 2.8680 | 20400 | 0.0003 | - |
| 2.8750 | 20450 | 0.0005 | - |
| 2.8820 | 20500 | 0.0006 | - |
| 2.8891 | 20550 | 0.0002 | - |
| 2.8961 | 20600 | 0.0003 | - |
| 2.9031 | 20650 | 0.0004 | - |
| 2.9102 | 20700 | 0.0003 | - |
| 2.9172 | 20750 | 0.0004 | - |
| 2.9242 | 20800 | 0.0002 | - |
| 2.9313 | 20850 | 0.0003 | - |
| 2.9383 | 20900 | 0.0004 | - |
| 2.9453 | 20950 | 0.0005 | - |
| 2.9523 | 21000 | 0.0003 | - |
| 2.9594 | 21050 | 0.0005 | - |
| 2.9664 | 21100 | 0.0006 | - |
| 2.9734 | 21150 | 0.0003 | - |
| 2.9805 | 21200 | 0.0005 | - |
| 2.9875 | 21250 | 0.0003 | - |
| 2.9945 | 21300 | 0.0003 | - |
Framework Versions
- Python: 3.13.7
- SetFit: 1.1.3
- Sentence Transformers: 5.1.1
- Transformers: 4.57.0
- PyTorch: 2.8.0+cu129
- Datasets: 4.2.0
- Tokenizers: 0.22.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}