π§ InfiR2
Collection
The InfiR2 releases the full suite of FP8 checkpoints from our pipeline, including models from CPTοΌSFT and RL.
β’
6 items
β’
Updated
π Paper | π Github | π Project Website
We performed multi-stage FP8 Reinforcement Learning (RL). More experimental details will be released soon. Stay tuned!
The InfiR2 framework offers multiple variants model with different size and training strategy:
Training Recipe:
Training hyperparameters:
| Parameter | Value |
|---|---|
| Batch Size | 128 |
| N Samples Per Prompt | 16 |
| Global Batch Size | 2048 |
| Maximum Response Length | 16384 |
| Rollout Temperature | 1.1 |
| Learning Rate | 1e-6 |
| Weight Decay | 0.1 |
| Eps Clip | 0.2 |
| KL Loss Coefficient | 0.00 |
Below is the performance comparison of InfiR2-R1-7B-FP8-Preview on reasoning benchmarks.
| Model | AIME 25 | AIME 24 | GPQA | LiveCodeBench v5 |
|---|---|---|---|---|
| Deepseek-Distill-Qwen-7B | 43.00 | 49.00 | 48.20 | 37.60 |
| InfiR2-R1-7B-FP8-Preview | 53.64 | 60.62 | 49.18 | 39.36 |
from vllm import LLM, SamplingParams
import torch
import os
MODEL_NAME = "InfiX-ai/InfiR2-R1-7B-FP8-Preview"
prompt_text = "Briefly explain what a black hole is, and provide two interesting facts."
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.8
DO_SAMPLE = True
llm = LLM(
model=MODEL_NAME,
dtype="auto",
)
sampling_params = SamplingParams(
n=1,
temperature=TEMPERATURE,
max_tokens=MAX_NEW_TOKENS,
)
tokenizer = llm.get_tokenizer()
messages = [
{"role": "user", "content": prompt_text}
]
prompt_formatted = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(
prompt_formatted,
sampling_params
)
generated_text = outputs[0].outputs[0].text
llm_response = generated_text.strip()
print("\n" + "="*70)
print(f"Prompt: \n{prompt_text}")
print("-" * 70)
print(f"(LLM Response): \n{llm_response}")
print("="*70)
# Create a directory for models
mkdir -p ./models
# Download InfiR2-R1-7B-FP8-Preview model
huggingface-cli download --resume-download InfiX-ai/InfiR2-R1-7B-FP8-Preview --local-dir ./models/InfiR2-R1-7B-FP8-Preview
This model is intended for research and commercial use. Example use cases include:
The model should not be used for:
If you find our work useful, please cite:
@misc{wang2025infir2comprehensivefp8training,
title={InfiR2: A Comprehensive FP8 Training Recipe for Reasoning-Enhanced Language Models},
author={Wenjun Wang and Shuo Cai and Congkai Xie and Mingfa Feng and Yiming Zhang and Zhen Li and Kejing Yang and Ming Li and Jiannong Cao and Hongxia Yang},
year={2025},
eprint={2509.22536},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={[https://arxiv.org/abs/2509.22536](https://arxiv.org/abs/2509.22536)},
}