Files changed (1) hide show
  1. README.md +72 -58
README.md CHANGED
@@ -1,59 +1,73 @@
1
- ---
2
- base_model: Qwen/Qwen2.5-0.5B
3
- datasets: HuggingFaceH4/ultrafeedback_binarized
4
- library_name: transformers
5
- model_name: Qwen2.5-0.5B-SFT-2e-4-3ep
6
- tags:
7
- - generated_from_trainer
8
- - trl
9
- - sft
10
- licence: license
11
- license: mit
12
- ---
13
-
14
- # Model Card for Qwen2.5-0.5B-SFT-2e-4-3ep
15
-
16
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset.
17
- It has been trained using [TRL](https://github.com/huggingface/trl).
18
-
19
- ## Quick start
20
-
21
- ```python
22
- from transformers import pipeline
23
-
24
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
25
- generator = pipeline("text-generation", model="JayHyeon/Qwen2.5-0.5B-SFT-2e-4-3ep", device="cuda")
26
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
27
- print(output["generated_text"])
28
- ```
29
-
30
- ## Training procedure
31
-
32
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/bcfz8e5k)
33
-
34
- This model was trained with SFT.
35
-
36
- ### Framework versions
37
-
38
- - TRL: 0.13.0.dev0
39
- - Transformers: 4.47.0.dev0
40
- - Pytorch: 2.5.1
41
- - Datasets: 3.1.0
42
- - Tokenizers: 0.20.3
43
-
44
- ## Citations
45
-
46
-
47
-
48
- Cite TRL as:
49
-
50
- ```bibtex
51
- @misc{vonwerra2022trl,
52
- title = {{TRL: Transformer Reinforcement Learning}},
53
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
54
- year = 2020,
55
- journal = {GitHub repository},
56
- publisher = {GitHub},
57
- howpublished = {\url{https://github.com/huggingface/trl}}
58
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ```
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-0.5B
3
+ datasets: HuggingFaceH4/ultrafeedback_binarized
4
+ library_name: transformers
5
+ model_name: Qwen2.5-0.5B-SFT-2e-4-3ep
6
+ tags:
7
+ - generated_from_trainer
8
+ - trl
9
+ - sft
10
+ licence: license
11
+ license: mit
12
+ language:
13
+ - zho
14
+ - eng
15
+ - fra
16
+ - spa
17
+ - por
18
+ - deu
19
+ - ita
20
+ - rus
21
+ - jpn
22
+ - kor
23
+ - vie
24
+ - tha
25
+ - ara
26
+ ---
27
+
28
+ # Model Card for Qwen2.5-0.5B-SFT-2e-4-3ep
29
+
30
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset.
31
+ It has been trained using [TRL](https://github.com/huggingface/trl).
32
+
33
+ ## Quick start
34
+
35
+ ```python
36
+ from transformers import pipeline
37
+
38
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
39
+ generator = pipeline("text-generation", model="JayHyeon/Qwen2.5-0.5B-SFT-2e-4-3ep", device="cuda")
40
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
41
+ print(output["generated_text"])
42
+ ```
43
+
44
+ ## Training procedure
45
+
46
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/bcfz8e5k)
47
+
48
+ This model was trained with SFT.
49
+
50
+ ### Framework versions
51
+
52
+ - TRL: 0.13.0.dev0
53
+ - Transformers: 4.47.0.dev0
54
+ - Pytorch: 2.5.1
55
+ - Datasets: 3.1.0
56
+ - Tokenizers: 0.20.3
57
+
58
+ ## Citations
59
+
60
+
61
+
62
+ Cite TRL as:
63
+
64
+ ```bibtex
65
+ @misc{vonwerra2022trl,
66
+ title = {{TRL: Transformer Reinforcement Learning}},
67
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
68
+ year = 2020,
69
+ journal = {GitHub repository},
70
+ publisher = {GitHub},
71
+ howpublished = {\url{https://github.com/huggingface/trl}}
72
+ }
73
  ```