Update README.md
Browse files
README.md
CHANGED
|
@@ -43,27 +43,78 @@ with open("audio.rttm", "w") as rttm:
|
|
| 43 |
|
| 44 |
## Advanced usage
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
```python
|
| 49 |
-
|
|
|
|
| 50 |
```
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
```python
|
| 55 |
-
|
|
|
|
| 56 |
```
|
| 57 |
|
| 58 |
-
If you
|
| 59 |
-
For instance,
|
| 60 |
|
| 61 |
```python
|
| 62 |
-
hparams = pipeline.parameters(instantiated=True)
|
| 63 |
hparams["segmentation_onset"] += 0.1
|
| 64 |
-
pipeline.instantiate(hparams)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
```
|
| 66 |
-
|
| 67 |
## Benchmark
|
| 68 |
|
| 69 |
### Real-time factor
|
|
|
|
| 43 |
|
| 44 |
## Advanced usage
|
| 45 |
|
| 46 |
+
If the number of speakers is known in advance, you can include the num_speakers parameter in the parameters dictionary:
|
| 47 |
|
| 48 |
```python
|
| 49 |
+
handler = EndpointHandler()
|
| 50 |
+
diarization = handler({"inputs": base64_audio, "parameters": {"num_speakers": 2}})
|
| 51 |
```
|
| 52 |
|
| 53 |
+
You can also provide lower and/or upper bounds on the number of speakers using the min_speakers and max_speakers parameters:
|
| 54 |
|
| 55 |
```python
|
| 56 |
+
handler = EndpointHandler()
|
| 57 |
+
diarization = handler({"inputs": base64_audio, "parameters": {"min_speakers": 2, "max_speakers": 5}})
|
| 58 |
```
|
| 59 |
|
| 60 |
+
If you're feeling adventurous, you can experiment with various pipeline hyperparameters.
|
| 61 |
+
For instance, you can use a more aggressive voice activity detection by increasing the value of segmentation_onset threshold:
|
| 62 |
|
| 63 |
```python
|
| 64 |
+
hparams = handler.pipeline.parameters(instantiated=True)
|
| 65 |
hparams["segmentation_onset"] += 0.1
|
| 66 |
+
handler.pipeline.instantiate(hparams)
|
| 67 |
+
```
|
| 68 |
+
To apply the updated handler for the API inference that can handle the number of speakers, use the following code:
|
| 69 |
+
```python
|
| 70 |
+
from typing import Dict
|
| 71 |
+
from pyannote.audio import Pipeline
|
| 72 |
+
import torch
|
| 73 |
+
import base64
|
| 74 |
+
import numpy as np
|
| 75 |
+
|
| 76 |
+
SAMPLE_RATE = 16000
|
| 77 |
+
|
| 78 |
+
class EndpointHandler():
|
| 79 |
+
def __init__(self, path=""):
|
| 80 |
+
# load the model
|
| 81 |
+
self.pipeline = Pipeline.from_pretrained("KIFF/pyannote-speaker-diarization-endpoint")
|
| 82 |
+
|
| 83 |
+
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
|
| 84 |
+
"""
|
| 85 |
+
Args:
|
| 86 |
+
data (:obj:):
|
| 87 |
+
includes the deserialized audio file as bytes
|
| 88 |
+
Return:
|
| 89 |
+
A :obj:`dict`:. base64 encoded image
|
| 90 |
+
"""
|
| 91 |
+
# process input
|
| 92 |
+
inputs = data.pop("inputs", data)
|
| 93 |
+
parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5
|
| 94 |
+
|
| 95 |
+
# decode the base64 audio data
|
| 96 |
+
audio_data = base64.b64decode(inputs)
|
| 97 |
+
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
| 98 |
+
|
| 99 |
+
# prepare pynannote input
|
| 100 |
+
audio_tensor= torch.from_numpy(audio_nparray).float().unsqueeze(0)
|
| 101 |
+
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
| 102 |
+
|
| 103 |
+
# apply pretrained pipeline
|
| 104 |
+
# pass inputs with all kwargs in data
|
| 105 |
+
if parameters is not None:
|
| 106 |
+
diarization = self.pipeline(pyannote_input, **parameters)
|
| 107 |
+
else:
|
| 108 |
+
diarization = self.pipeline(pyannote_input)
|
| 109 |
+
|
| 110 |
+
# postprocess the prediction
|
| 111 |
+
processed_diarization = [
|
| 112 |
+
{"label": str(label), "start": str(segment.start), "stop": str(segment.end)}
|
| 113 |
+
for segment, _, label in diarization.itertracks(yield_label=True)
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
return {"diarization": processed_diarization}
|
| 117 |
```
|
|
|
|
| 118 |
## Benchmark
|
| 119 |
|
| 120 |
### Real-time factor
|