KISTI-KONI/KONI-4B-instruct-20250901

Model Description

KONI (KISTI Open Neural Intelligence) is a large language model developed by the Korea Institute of Science and Technology Information (KISTI). Designed specifically for the scientific and technological domains, KONI excels in both Korean and English, making it an ideal tool for tasks requiring specialized knowledge in these areas.


Key Features

  • Bilingual Model: Supports both Korean and English, with a focus on scientific and technical texts.
  • Post-training: The model undergoes post-training via instruction tuning (IT) and direct preference optimization (DPO) using a filtered, high-quality bilingual dataset that includes scientific data and publicly available resources. This ensures adaptability to evolving scientific and technological content.
  • Base Model: Built upon KISTI-KONI/KONI-4B-base-20250819, KONI-4B-instruct undergoes post-training for superior performance on both general and scientific benchmarks.
  • Training Environment: Trained on 24 H200 GPUs at the KISTI supercomputer, optimizing both speed and quality during development.
  • Dataset: Utilizes a high-quality and balanced dataset of 9 billion instruction-following pairs, comprising scientific texts as well as publicly available bilingual data.
  • Data Optimization: The post-training process involved testing a variety of data distributions (balanced, reasoning-enhanced, knowledge-enhanced, minimal Korean settings, etc.) and selecting the optimal combination for training.
  • Enhanced Performance: KONI-4B-instruct, developed through instruction tuning of the KONI-4B-base model, delivers superior performance compared to other similarly-sized models.

Model Performance

KONI-4B-instruct has demonstrated strong performance on a variety of scientific benchmarks, outperforming several other 4B-sized pretrained models. Here is a comparison of KONI-4B-instructโ€™s performance across various benchmarks including scientific and technological benchmarks:

Rank Model KMMLU KMMLU-Hard KMMLU-Direct KoBEST HAERAE kormedmcqa MMLU ARC_easy ARC_challenge Hellaswag ScholarBench-MC AidaBench-MC average
1 Qwen/Qwen3-8B 0.5500 0.2900 0.5558 0.7800 0.6700 0.3750 0.7400 0.8700 0.6400 0.5700 0.7094 0.7314 0.623462
2 kakaocorp/kanana-1.5-8b-base 0.4800 0.2500 0.4872 0.6200 0.8200 0.5910 0.6300 0.8300 0.5600 0.6000 0.6800 0.7548 0.608580
3 LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct 0.4700 0.2300 0.4532 0.5900 0.7800 0.5310 0.6500 0.8300 0.5900 0.6200 0.6900 0.7057 0.594986
4 KISTI-KONI/KONI-4B-instruct-20250901 0.4188 0.2110 0.4194 0.7393 0.7333 0.4719 0.5823 0.8342 0.5452 0.5783 0.6980 0.6274 0.571603
5 kakaocorp/kanana-1.5-2.1b-instruct-2505 0.4200 0.2100 0.4247 0.7700 0.7900 0.5224 0.5500 0.8000 0.5300 0.5100 0.6630 0.6688 0.571577
6 KISTI-KONI/KONI-4B-base-20250819 0.4300 0.2100 0.4349 0.7300 0.6600 0.4800 0.5800 0.8200 0.5200 0.5700 0.6800 0.6147 0.560803
7 LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct 0.4300 0.2100 0.4379 0.7400 0.6600 0.4842 0.5900 0.7700 0.5000 0.5400 0.6900 0.6511 0.558603
8 KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024 0.4000 0.2000 0.4100 0.5600 0.6400 0.4905 0.6300 0.8300 0.5400 0.6100 0.6980 0.6722 0.556725
9 meta-llama/Llama-3.1-8B-Instruct 0.4000 0.2000 0.4119 0.7000 0.4400 0.4789 0.6500 0.8400 0.5400 0.6100 0.6960 0.6709 0.553135
10 google/gemma-3-4b-pt 0.3980 0.1998 0.3966 0.6990 0.6672 0.4726 0.5964 0.8300 0.5435 0.5763 0.6670 0.5886 0.552906
11 google/gemma-3-4b-it 0.3900 0.2100 0.3904 0.7200 0.5900 0.4400 0.5800 0.8400 0.5600 0.5600 0.6990 0.6013 0.548388
12 saltlux/Ko-Llama3-Luxia-8B 0.3800 0.2100 0.3935 0.7100 0.6800 0.4320 0.5500 0.8000 0.4800 0.5600 0.6650 0.6109 0.539283
13 MLP-KTLim/llama-3-Korean-Bllossom-8B 0.3700 0.2200 0.3738 0.5500 0.4700 0.4163 0.6400 0.8400 0.5700 0.5900 0.6525 0.5862 0.523239
14 kakaocorp/kanana-1.5-2.1b-base 0.3900 0.2400 0.4502 0.6200 0.5700 0.5138 0.4700 0.7300 0.4400 0.4500 0.6500 0.6478 0.514315
15 naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-1.5B 0.3900 0.2400 0.3524 0.6400 0.5700 0.3550 0.4700 0.7300 0.4400 0.4500 0.5950 0.5450 0.481447
16 naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B 0.3700 0.2200 0.3798 0.6200 0.5600 0.3383 0.4400 0.7200 0.3900 0.4100 0.5600 0.5173 0.460449
17 mistralai/Mistral-7B-v0.3 0.3700 0.2200 0.3739 0.6300 0.3700 0.3735 0.6200 0.8300 0.5500 0.6200 0.5440 0.4257 0.413117
18 google/gemma-3-1b-it 0.3069 0.2400 0.2935 0.3556 0.5987 0.2761 0.3970 0.6620 0.3430 0.4204 0.5720 0.3972 0.390038
19 google/gemma-3-1b-pt 0.2582 0.2456 0.2556 0.5569 0.1952 0.1964 0.2641 0.7146 0.3541 0.4703 0.2192 0.1980 0.327362
20 etri-lirs/eagle-3b-preview 0.1600 0.2100 0.1617 0.5100 0.1900 0.1804 0.2500 0.5700 0.2400 0.3700 0.2678 0.2224 0.236846

image/png

As shown, KISTI-KONI/KONI-4B-instruct-20250901 is the top-performing model in the 4B-size instruction-tuned model category, outperforming google/gemma-3-4b-it and KISTI-KONI/KONI-4B-base-20250819.


Strengths & Use Cases

  • Domain-Specific Excellence: KONI-4B-instruct excels at tasks involving scientific literature, technological content, and complex reasoning. It is ideal for research, academic analysis, and specialized problem-solving.
  • Bilingual Advantage: The modelโ€™s bilingual nature enables handling diverse datasets and generating high-quality responses in both English and Korean, especially in bilingual scientific collaborations.
  • Benchmark Performance: KONI-4B-instruct has shown superior performance in benchmarks such as KMMLU, kormedmcqa, and ScholarBench-MC, proving its robustness in knowledge-intensive tasks.

Usage

$ pip install -U transformers
from transformers import pipeline
import torch

pipe = pipeline("text-generation", model="KISTI-KONI/KONI-4B-instruct-20250901", device="cuda", torch_dtype=torch.bfloat16)

messages = [
    [
        {
            "role": "system",
            "content": [{"type": "text", "text": "You are a helpful assistant."},]
        },
        {
            "role": "user",
            "content": [{"type": "text", "text": "์Šˆํผ์ปดํ“จํ„ฐ์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•ด์ค˜."},]
        },
    ],
]

output = pipe(
    messages,
    max_new_tokens=512,
    eos_token_id=[pipe.tokenizer.eos_token_id, pipe.tokenizer.convert_tokens_to_ids("<end_of_turn>")]
)

Citation

If you use this model in your work, please cite it as follows:

@article{KISTI-KONI/KONI-4B-instruct-20250901,
  title={KISTI-KONI/KONI-4B-instruct-20250901},
  author={KISTI},
  year={2025},
  url={https://huggingface.co/KISTI-KONI/KONI-4B-instruct-20250901}
}

Acknowledgements

  • This research was supported by the Korea Institute of Science and Technology Information (KISTI) in 2025 (No. (KISTI) K25L1M1C1), aimed at developing KONI (KISTI Open Neural Intelligence), a large language model specialized in science and technology.
  • This work also benefited from the resources and technical support provided by the National Supercomputing Center (KISTI).

References

Downloads last month
145
Safetensors
Model size
4B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for KISTI-KONI/KONI-4B-instruct-20250901

Finetuned
(246)
this model
Adapters
1 model
Quantizations
1 model

Collection including KISTI-KONI/KONI-4B-instruct-20250901