next-ocr / README.md
Lamapi's picture
Update README.md
2450b74 verified
|
raw
history blame
6.02 kB
---
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_vl
- trl
- sft
- chemistry
- code
- climate
- art
- biology
- finance
- legal
- music
- medical
- agent
license: apache-2.0
language:
- en
- ab
- aa
- ae
- af
- ak
- am
- an
- ar
- as
- av
- ay
- az
- ba
- be
- bg
- bh
- bi
- bm
- bn
- bo
- br
- bs
- ca
- ce
- ch
- co
- cr
- cs
- cu
- cv
- cy
- da
- de
- dv
- dz
- ee
- el
- eo
- es
- et
- eu
- fa
- ff
- fi
- fj
- fo
- fr
- fy
- ga
- gd
- gl
- gn
- gv
- ha
- he
- hi
- ho
- gu
- hr
- ht
- hu
- hz
- hy
- id
- ia
- ig
- ie
- ik
- ii
- is
- io
- iu
- it
- jv
- ja
- kg
- ka
- kj
- ki
- kl
- kk
- kn
- km
- kr
- ko
- ku
- ks
- kw
- kv
- la
- ky
- lg
- lb
- ln
- li
- lt
- lo
- lv
- lu
- mg
- mi
- mh
- ml
- mk
- mr
- mn
- mt
- ms
- na
- my
- nd
- nb
- ng
- nl
- ne
- 'no'
- nn
- nv
- nr
- oc
- oj
- om
- ny
- os
- or
- pa
- pi
- pl
- ps
- pt
- rm
- rn
- qu
- ro
- ru
- sn
- rw
- so
- sa
- sc
- sd
pipeline_tag: image-to-text
library_name: transformers
---
<img src='bannerocr.png'>
# 🖼️ Next OCR 8B
### *Compact OCR AI — Accurate, Fast, Multilingual, Math-Optimized*
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Language: Multilingual](https://img.shields.io/badge/Language-Multilingual-red.svg)]()
[![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--OCR--orange.svg)](https://huggingface.co/Lamapi/next-ocr)
---
## 📖 Overview
**Next OCR 8B** is an **8-billion parameter model** optimized for **optical character recognition (OCR) tasks** with **mathematical and tabular content understanding**.
Supports **multilingual OCR** (Turkish, English, German, Spanish, French, Chinese, Japanese, Korean, Russian...) with high accuracy, including structured documents like tables, forms, and formulas.
---
## ⚡ Highlights
* 🖼️ Accurate text extraction, including math and tables
* 🌍 Multilingual support (30+ languages)
* ⚡ Lightweight and efficient
* 💬 Instruction-tuned for document understanding and analysis
---
## 📊 Benchmark & Comparison
| Model | OCR Accuracy (%) | Multilingual Accuracy (%) | Layout / Table Understanding (%) | Notes |
| ------------------- | ------------------------ | ------------------------- | -------------------------------- | --------------------------------------------------------------------------------------------------------------------- |
| **Next OCR 8B** | 94.8 | 92.5 | 90.7 | Compact, Türkiye ve çokdilli odaklı, matematik & tablo destekli |
| **DeepSeek‑OCR 3B** | 97 (yüksek sıkıştırmada) | 88–90 | 85–87 | Matematik ve tablo odaklı, 3B parametre, “optical context compression” ile long-doc ve tablolar için güçlü alternatif |
> ⚡ **Note:** DeepSeek‑OCR 3B özellikle **matematiksel içerikli dokümanlar, tablolar ve formüller** üzerinde güçlü. Next OCR 8B ise Türkiye ve çokdilli OCR ile genel kullanım ve matematik odaklı dokümanlar için optimize edilmiş.
---
## 🚀 Installation & Usage
```python
from transformers import AutoTokenizer, AutoModelForVision2Seq
import torch
model_id = "Lamapi/next-ocr"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
image_path = "document.png"
images = [image_path]
inputs = tokenizer(images, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## 🧩 Key Features
| Feature | Description |
| -------------------------- | --------------------------------------------------------------- |
| 🖼️ High-Accuracy OCR | Extracts text from images, documents, and screenshots reliably. |
| 🇹🇷 Multilingual Support | Works with 30+ languages including Turkish. |
| ⚡ Lightweight & Efficient | Optimized for resource-constrained environments. |
| 📄 Layout & Math Awareness | Handles tables, forms, and mathematical formulas. |
| 🏢 Reliable Outputs | Suitable for enterprise document workflows. |
---
## 📐 Model Specifications
| Specification | Details |
| ----------------- | --------------------------------------------------------- |
| **Base Model** | Qwen 3 |
| **Parameters** | 8 Billion |
| **Architecture** | Vision + Transformer (OCR LLM) |
| **Modalities** | Image-to-text |
| **Fine-Tuning** | OCR datasets with multilingual and math/tabular content |
| **Optimizations** | Quantization-ready, FP16 support |
| **Primary Focus** | Text extraction, document understanding, mathematical OCR |
---
## 🎯 Ideal Use Cases
* Document digitization
* Invoice & receipt processing
* Multilingual OCR pipelines
* Tables, forms, and formulas extraction
* Enterprise document management
---
## 📄 License
MIT License — free for commercial & non-commercial use.
---
## 📞 Contact & Support
* 📧 Email: [[email protected]](mailto:[email protected])
* 🤗 HuggingFace: [Lamapi](https://huggingface.co/Lamapi)
---
> **Next OCR** — Compact *OCR + math-capable* AI, blending **accuracy**, **speed**, and **multilingual document intelligence**.
[![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)