LovenOO/distilBERT_with_preprocessing

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2890
  • Validation Loss: 0.6104
  • Train Accuracy: 0.8264
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2545, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.6308 0.6631 0.8136 0
0.4767 0.6222 0.8264 1
0.3731 0.6148 0.8308 2
0.3117 0.6104 0.8264 3
0.2875 0.6104 0.8264 4
0.2890 0.6104 0.8264 5

Framework versions

  • Transformers 4.24.0
  • TensorFlow 2.13.0
  • Datasets 2.14.2
  • Tokenizers 0.11.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support