KAT-Dev-72B-Exp - GPTQ INT4 (group_size=32)

This is a GPTQ quantized version of Kwaipilot/KAT-Dev-72B-Exp.

Quantization Details

  • Method: GPTQ (GPT Quantization)
  • Bits: 4
  • Group Size: 32
  • Quantization Type: INT
  • Symmetric: True
  • Calibration Samples: 128
  • Calibration Dataset: allenai/c4
  • Max Sequence Length: 512

Hardware Used for Quantization

  • 6x NVIDIA GeForce RTX 5090 (32GB each)
  • CUDA 12.8+
  • Sequential layer-by-layer processing (OOM-safe)

Usage

With vLLM

from vllm import LLM, SamplingParams

# Initialize the model
llm = LLM(model="Vykyan/KAT-Dev-72B-Exp-GPTQ-INT4-gs32", trust_remote_code=True)

# Create sampling parameters
sampling_params = SamplingParams(
    temperature=0.7,
    top_p=0.9,
    max_tokens=512,
)

# Generate text
prompts = ["Hello, how are you?"]
outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    print(output.outputs[0].text)

With Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "Vykyan/KAT-Dev-72B-Exp-GPTQ-INT4-gs32",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
    "Vykyan/KAT-Dev-72B-Exp-GPTQ-INT4-gs32",
    trust_remote_code=True
)

# Generate
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Inference Performance

This quantized model offers:

  • ~4x memory reduction compared to FP16
  • Faster inference on compatible hardware
  • Maintained accuracy through GPTQ quantization

Recommended Hardware

  • NVIDIA GPUs with compute capability 7.5+ (RTX 20-series or newer)
  • Minimum 24GB VRAM for single-GPU inference
  • Multi-GPU setup for larger batch sizes

Model Details

  • Base Model: Kwaipilot/KAT-Dev-72B-Exp
  • Quantization Tool: llm-compressor
  • Compatible Inference Engines: vLLM, TGI (Text Generation Inference)

Limitations

  • Quantization may affect model accuracy on certain tasks
  • Requires vLLM or compatible inference engine for optimal performance

Acknowledgements

Downloads last month
26
Safetensors
Model size
13B params
Tensor type
I64
I32
BF16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for MidnightPhreaker/KAT-Dev-72B-Exp-GPTQ-INT4-gs32

Quantized
(17)
this model