DeepSeek-Prover-V1.5-Base SINQ 4-bit

This is a 4-bit quantized version of DeepSeek-Prover-V1.5-Base using SINQ (Sinkhorn-Normalized Quantization).

Model Details

  • Base Model: DeepSeek-Prover-V1.5-Base (7B parameters)
  • Quantization Method: SINQ 4-bit with 2D tiling
  • Group Size: 128
  • Model Size: ~3.5 GB (75% reduction from ~14GB original)
  • Memory Usage: ~5 GB GPU memory at inference
  • Quality: Lower quality than original (word overlap ~40-50%)

Quantization Configuration

BaseQuantizeConfig(
    nbits=4,
    group_size=128,
    method="sinq",
    tiling_mode="2D",
    axis=1
)

Usage

Installation

pip install torch transformers
pip install git+https://github.com/huawei-csl/SINQ.git

Loading the Model

import torch
from sinq.patch_model import AutoSINQHFModel
from transformers import AutoTokenizer

# Load quantized model
tokenizer = AutoTokenizer.from_pretrained("Minhdn/deepseek-prover-sinq-4bit")
model = AutoSINQHFModel.from_quantized_safetensors(
    "Minhdn/deepseek-prover-sinq-4bit",
    device="cuda:0",
    compute_dtype=torch.bfloat16
)

# Generate
prompt = "theorem add_comm (a b : Nat) : a + b = b + a := by"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

Performance

  • Inference Speed: ~3-4 tokens/second (slower without gemlite support for 2D tiling)
  • Memory Savings: 75% compared to original model
  • Quality: Moderate - best for experimentation or resource-constrained environments

Limitations

  • Lower quality compared to original model (word overlap ~40-50%)
  • Slower inference due to 2D tiling (gemlite only supports 1D)
  • May produce incorrect Lean4 proofs more frequently than original
  • Not recommended for production use where correctness is critical

Recommendations

For better quality at the cost of larger model size, consider:

Citation

If you use this model, please cite both the original DeepSeek-Prover paper and SINQ:

@article{deepseek2024prover,
  title={DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data},
  author={DeepSeek-AI},
  journal={arXiv preprint arXiv:2405.14333},
  year={2024}
}

@article{sinq2024,
  title={SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLMs},
  author={SINQ Authors},
  journal={arXiv preprint arXiv:2509.22944},
  year={2024}
}

License

This model inherits the MIT license from the original DeepSeek-Prover-V1.5-Base model.

Downloads last month
16
Safetensors
Model size
4B params
Tensor type
F16
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Minhdn/deepseek-prover-sinq-4bit

Finetuned
(3)
this model