Translator / transcribe /whisper_llm_serve.py
daihui.zhang
filter [] words
5518c26
raw
history blame
13.4 kB
import asyncio
import json
import queue
import threading
import time
from logging import getLogger
from typing import List, Optional, Iterator, Tuple, Any
import asyncio
import numpy as np
import config
import collections
from api_model import TransResult, Message, DebugResult
from .utils import log_block, save_to_wave, TestDataWriter, filter_words
from .translatepipes import TranslatePipes
from .strategy import (
TranscriptStabilityAnalyzer, TranscriptToken)
from transcribe.helpers.vadprocessor import VadProcessor
# from transcribe.helpers.vad_dynamic import VadProcessor
# from transcribe.helpers.vadprocessor import VadProcessor
from transcribe.pipelines import MetaItem
logger = getLogger("TranscriptionService")
class WhisperTranscriptionService:
"""
Whisper语音转录服务类,处理音频流转录和翻译
"""
SERVER_READY = "SERVER_READY"
DISCONNECT = "DISCONNECT"
def __init__(self, websocket, pipe: TranslatePipes, language=None, dst_lang=None, client_uid=None):
print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>')
print('src_lang:', language)
self.source_language = language # 源语言
self.target_language = dst_lang # 目标翻译语言
self.client_uid = client_uid
# 转录结果稳定性管理
self.websocket = websocket
self._translate_pipe = pipe
# 音频处理相关
self.sample_rate = 16000
self.lock = threading.Lock()
# 文本分隔符,根据语言设置
self.text_separator = self._get_text_separator(language)
self.loop = asyncio.get_event_loop()
# 发送就绪状态
# 原始音频队列
self._frame_queue = queue.Queue()
# 音频队列缓冲区
self.frames_np = None
# 完整音频队列
self.segments_queue = collections.deque()
self._temp_string = ""
self._transcrible_analysis = None
# 启动处理线程
self._translate_thread_stop = threading.Event()
self._frame_processing_thread_stop = threading.Event()
self.translate_thread = self._start_thread(self._transcription_processing_loop)
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
# if language == "zh":
# self._vad = VadProcessor(prob_threshold=0.8, silence_s=0.2, cache_s=0.15)
# else:
# self._vad = VadProcessor(prob_threshold=0.7, silence_s=0.2, cache_s=0.15)
self.row_number = 0
# for test
self._transcrible_time_cost = 0.
self._translate_time_cost = 0.
if config.SAVE_DATA_SAVE:
self._save_task_stop = threading.Event()
self._save_queue = queue.Queue()
self._save_thread = self._start_thread(self.save_data_loop)
# self._c = 0
def save_data_loop(self):
writer = TestDataWriter()
while not self._save_task_stop.is_set():
test_data = self._save_queue.get()
writer.write(test_data) # Save test_data to CSV
def _start_thread(self, target_function) -> threading.Thread:
"""启动守护线程执行指定函数"""
thread = threading.Thread(target=target_function)
thread.daemon = True
thread.start()
return thread
def _get_text_separator(self, language: str) -> str:
"""根据语言返回适当的文本分隔符"""
return "" if language == "zh" else " "
async def send_ready_state(self) -> None:
"""发送服务就绪状态消息"""
await self.websocket.send(json.dumps({
"uid": self.client_uid,
"message": self.SERVER_READY,
"backend": "whisper_transcription"
}))
def set_language(self, source_lang: str, target_lang: str) -> None:
"""设置源语言和目标语言"""
self.source_language = source_lang
self.target_language = target_lang
self.text_separator = self._get_text_separator(source_lang)
# self._transcrible_analysis = TranscriptStabilityAnalyzer(self.source_language, self.text_separator)
def add_frames(self, frame_np: np.ndarray) -> None:
"""添加音频帧到处理队列"""
self._frame_queue.put(frame_np)
def _apply_voice_activity_detection(self, frame_np:np.array):
"""应用语音活动检测来优化音频缓冲区"""
processed_audio = self._translate_pipe.voice_detect(frame_np.tobytes())
speech_audio = np.frombuffer(processed_audio.audio, dtype=np.float32)
speech_status = processed_audio.speech_status
return speech_audio, speech_status
def _frame_processing_loop(self) -> None:
"""从队列获取音频帧并合并到缓冲区"""
while not self._frame_processing_thread_stop.is_set():
try:
frame_np = self._frame_queue.get(timeout=0.1)
frame_np, speech_status = self._apply_voice_activity_detection(frame_np)
if frame_np is None:
continue
with self.lock:
if self.frames_np is None:
self.frames_np = frame_np.copy()
else:
self.frames_np = np.append(self.frames_np, frame_np)
if speech_status == "END" and len(frame_np) > 0:
self.segments_queue.appendleft(self.frames_np.copy())
self.frames_np = np.array([], dtype=np.float32)
except queue.Empty:
pass
def _process_transcription_results_2(self, seg_text:str,partial):
item = TransResult(
seg_id=self.row_number,
context=seg_text,
from_=self.source_language,
to=self.target_language,
tran_content=self._translate_text_large(seg_text),
partial=partial
)
if partial == False:
self.row_number += 1
return item
def _transcription_processing_loop(self) -> None:
"""主转录处理循环"""
frame_epoch = 1
while not self._translate_thread_stop.is_set():
if self.frames_np is None:
time.sleep(0.2)
continue
with self.lock:
if len(self.segments_queue) >0:
audio_buffer = self.segments_queue.pop()
partial = False
else:
audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)]# 获取 1.5s * epoch 个音频长度
partial = True
if len(audio_buffer) ==0:
time.sleep(0.2)
continue
if len(audio_buffer) < int(self.sample_rate):
silence_audio = np.zeros(self.sample_rate, dtype=np.float32)
silence_audio[-len(audio_buffer):] = audio_buffer
audio_buffer = silence_audio
logger.debug(f"audio buffer size: {len(audio_buffer) / self.sample_rate:.2f}s")
# try:
meta_item = self._transcribe_audio(audio_buffer)
segments = meta_item.segments
logger.debug(f"Segments: {segments}")
segments = filter_words(segments)
if len(segments):
seg_text = self.text_separator.join(seg.text for seg in segments)
if self._temp_string:
seg_text = self._temp_string + seg_text
if partial == False:
if len(seg_text) < config.TEXT_THREHOLD:
partial = True
self._temp_string = seg_text
else:
self._temp_string = ""
result = self._process_transcription_results_2(seg_text, partial)
self._send_result_to_client(result)
time.sleep(0.1)
if partial == False:
frame_epoch = 1
else:
frame_epoch += 1
# 处理转录结果并发送到客户端
# for result in self._process_transcription_results(segments, audio_buffer):
# self._send_result_to_client(result)
# except Exception as e:
# logger.error(f"Error processing audio: {e}")
def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem:
"""转录音频并返回转录片段"""
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
start_time = time.perf_counter()
result = self._translate_pipe.transcrible(audio_buffer.tobytes(), self.source_language)
segments = result.segments
time_diff = (time.perf_counter() - start_time)
logger.debug(f"📝 Transcrible Segments: {segments} ")
# logger.debug(f"📝 Transcrible: {self.text_separator.join(seg.text for seg in segments)} ")
log_block("📝 Transcrible output", f"{self.text_separator.join(seg.text for seg in segments)}", "")
log_block("📝 Transcrible time", f"{time_diff:.3f}", "s")
self._transcrible_time_cost = round(time_diff, 3)
return result
def _translate_text(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("🐧 Translation input ", f"{text}")
start_time = time.perf_counter()
result = self._translate_pipe.translate(text, self.source_language, self.target_language)
translated_text = result.translate_content
time_diff = (time.perf_counter() - start_time)
log_block("🐧 Translation time ", f"{time_diff:.3f}", "s")
log_block("🐧 Translation out ", f"{translated_text}")
self._translate_time_cost = round(time_diff, 3)
return translated_text
def _translate_text_large(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("Translation input", f"{text}")
start_time = time.perf_counter()
result = self._translate_pipe.translate_large(text, self.source_language, self.target_language)
translated_text = result.translate_content
time_diff = (time.perf_counter() - start_time)
log_block("Translation large model time ", f"{time_diff:.3f}", "s")
log_block("Translation large model output", f"{translated_text}")
self._translate_time_cost = round(time_diff, 3)
return translated_text
def _process_transcription_results(self, segments: List[TranscriptToken], audio_buffer: np.ndarray) -> Iterator[TransResult]:
"""
处理转录结果,生成翻译结果
Returns:
TransResult对象的迭代器
"""
if not segments:
return
start_time = time.perf_counter()
for ana_result in self._transcrible_analysis.analysis(segments, len(audio_buffer)/self.sample_rate):
if (cut_index :=ana_result.cut_index)>0:
# 更新音频缓冲区,移除已处理部分
self._update_audio_buffer(cut_index)
if ana_result.partial():
translated_context = self._translate_text(ana_result.context)
else:
translated_context = self._translate_text_large(ana_result.context)
yield TransResult(
seg_id=ana_result.seg_id,
context=ana_result.context,
from_=self.source_language,
to=self.target_language,
tran_content=translated_context,
partial=ana_result.partial()
)
current_time = time.perf_counter()
time_diff = current_time - start_time
if config.SAVE_DATA_SAVE:
self._save_queue.put(DebugResult(
seg_id=ana_result.seg_id,
transcrible_time=self._transcrible_time_cost,
translate_time=self._translate_time_cost,
context=ana_result.context,
from_=self.source_language,
to=self.target_language,
tran_content=translated_context,
partial=ana_result.partial()
))
log_block("🚦 Traffic times diff", round(time_diff, 2), 's')
def _send_result_to_client(self, result: TransResult) -> None:
"""发送翻译结果到客户端"""
try:
message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
coro = self.websocket.send_text(message)
future = asyncio.run_coroutine_threadsafe(coro, self.loop)
future.add_done_callback(lambda fut: fut.exception() and self.stop())
except RuntimeError:
self.stop()
except Exception as e:
logger.error(f"Error sending result to client: {e}")
def stop(self) -> None:
"""停止所有处理线程并清理资源"""
self._translate_thread_stop.set()
self._frame_processing_thread_stop.set()
if config.SAVE_DATA_SAVE:
self._save_task_stop.set()
logger.info(f"Stopping transcription service for client: {self.client_uid}")