File size: 13,416 Bytes
9bdac3d
586518f
c0447ed
0c38083
 
 
 
b2de29e
0c38083
93d2288
ca5d527
93d2288
31ad35a
5518c26
6f13b8c
27321a0
813ffab
31ad35a
793447d
ca5d527
31ad35a
586518f
0c38083
586518f
 
6696134
0c38083
 
 
8be1cbc
6696134
 
 
0c38083
b67c020
 
0c38083
 
6696134
0c38083
6696134
0c38083
8be1cbc
0c38083
 
b67c020
0c38083
b12f0fd
31ad35a
0c38083
 
b2de29e
0c38083
ca5d527
 
 
 
 
 
d3badad
b67c020
7dc6a6f
0c38083
ab22d1a
0c38083
93d2288
0c38083
 
ca5d527
 
 
 
31ad35a
93d2288
 
 
01e617c
 
 
 
 
b67c020
b2de29e
b67c020
01e617c
93d2288
01e617c
 
93d2288
b2de29e
27321a0
0c38083
 
 
 
 
 
c0447ed
0c38083
 
 
586518f
31ad35a
0c38083
31ad35a
586518f
 
0c38083
586518f
 
0c38083
 
 
 
418e2a0
31ad35a
abe0fe2
6696134
0c38083
c0447ed
 
ca5d527
 
 
 
 
 
 
0c38083
 
 
c0447ed
ca5d527
 
 
 
 
 
 
 
 
d3badad
ca5d527
 
c0447ed
 
2a2d4ba
d3badad
b12f0fd
ca5d527
 
 
 
 
 
 
 
 
 
 
b12f0fd
ca5d527
 
 
 
 
 
 
 
31ad35a
ca5d527
 
 
 
 
 
 
b12f0fd
ca5d527
 
 
 
 
 
 
 
b12f0fd
ca5d527
 
 
 
 
 
5518c26
ca5d527
d3badad
 
 
 
 
 
 
 
 
 
b12f0fd
 
d3badad
ca5d527
 
 
d3badad
 
 
 
ca5d527
 
 
 
 
 
 
31ad35a
 
0c38083
1f45d99
 
 
0c38083
 
93d2288
eabbf72
31ad35a
c6b44fd
93d2288
 
31ad35a
0c38083
 
 
 
 
8be1cbc
c6b44fd
1f45d99
8be1cbc
0c38083
 
93d2288
 
c6b44fd
93d2288
c0447ed
8be1cbc
2aed46a
 
 
 
8be1cbc
2aed46a
 
8be1cbc
2aed46a
 
93d2288
 
2aed46a
93d2288
2aed46a
e046f39
0c38083
31ad35a
813ffab
0c38083
 
8be1cbc
0c38083
 
 
813ffab
 
2a2d4ba
81f1d0a
7dc6a6f
813ffab
 
 
2aed46a
 
 
 
8be1cbc
2a2d4ba
813ffab
 
0c38083
 
813ffab
 
2a2d4ba
81f1d0a
 
01e617c
 
93d2288
 
 
 
 
 
 
 
 
c6b44fd
0c38083
813ffab
0c38083
 
ab22d1a
0c38083
 
730ea7e
 
0c38083
ab22d1a
 
0c38083
586518f
0c38083
 
ab22d1a
0c38083
01e617c
 
8be1cbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import asyncio
import json
import queue
import threading
import time
from logging import getLogger
from typing import List, Optional, Iterator, Tuple, Any
import asyncio
import numpy as np
import config
import collections
from api_model import TransResult, Message, DebugResult

from .utils import log_block, save_to_wave, TestDataWriter, filter_words
from .translatepipes import TranslatePipes
from .strategy import (
    TranscriptStabilityAnalyzer, TranscriptToken)
from transcribe.helpers.vadprocessor import VadProcessor
# from transcribe.helpers.vad_dynamic import VadProcessor
# from transcribe.helpers.vadprocessor import VadProcessor
from transcribe.pipelines import MetaItem

logger = getLogger("TranscriptionService")


class WhisperTranscriptionService:
    """
    Whisper语音转录服务类,处理音频流转录和翻译
    """

    SERVER_READY = "SERVER_READY"
    DISCONNECT = "DISCONNECT"

    def __init__(self, websocket, pipe: TranslatePipes, language=None, dst_lang=None, client_uid=None):
        print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>')
        print('src_lang:', language)
        self.source_language = language  # 源语言
        self.target_language = dst_lang  # 目标翻译语言
        self.client_uid = client_uid
        # 转录结果稳定性管理
        self.websocket = websocket
        self._translate_pipe = pipe

        # 音频处理相关
        self.sample_rate = 16000

        self.lock = threading.Lock()


        # 文本分隔符,根据语言设置
        self.text_separator = self._get_text_separator(language)
        self.loop = asyncio.get_event_loop()
        # 发送就绪状态
        #  原始音频队列
        self._frame_queue = queue.Queue()
        #  音频队列缓冲区
        self.frames_np = None
        #  完整音频队列
        self.segments_queue = collections.deque()
        self._temp_string = ""

        self._transcrible_analysis = None
        # 启动处理线程
        self._translate_thread_stop = threading.Event()
        self._frame_processing_thread_stop = threading.Event()

        self.translate_thread = self._start_thread(self._transcription_processing_loop)
        self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
        # if language == "zh":
        #     self._vad = VadProcessor(prob_threshold=0.8, silence_s=0.2, cache_s=0.15)
        # else:
        #     self._vad = VadProcessor(prob_threshold=0.7, silence_s=0.2, cache_s=0.15)
        self.row_number = 0
        # for test
        self._transcrible_time_cost = 0.
        self._translate_time_cost = 0.

        if config.SAVE_DATA_SAVE:
            self._save_task_stop = threading.Event()
            self._save_queue = queue.Queue()
            self._save_thread = self._start_thread(self.save_data_loop)

        # self._c = 0

    def save_data_loop(self):
        writer = TestDataWriter()
        while not self._save_task_stop.is_set():
            test_data = self._save_queue.get()
            writer.write(test_data)  # Save test_data to CSV


    def _start_thread(self, target_function) -> threading.Thread:
        """启动守护线程执行指定函数"""
        thread = threading.Thread(target=target_function)
        thread.daemon = True
        thread.start()
        return thread

    def _get_text_separator(self, language: str) -> str:
        """根据语言返回适当的文本分隔符"""
        return "" if language == "zh" else " "

    async def send_ready_state(self) -> None:
        """发送服务就绪状态消息"""
        await self.websocket.send(json.dumps({
            "uid": self.client_uid,
            "message": self.SERVER_READY,
            "backend": "whisper_transcription"
        }))

    def set_language(self, source_lang: str, target_lang: str) -> None:
        """设置源语言和目标语言"""
        self.source_language = source_lang
        self.target_language = target_lang
        self.text_separator = self._get_text_separator(source_lang)
        # self._transcrible_analysis = TranscriptStabilityAnalyzer(self.source_language, self.text_separator)

    def add_frames(self, frame_np: np.ndarray) -> None:
        """添加音频帧到处理队列"""
        self._frame_queue.put(frame_np)

    def _apply_voice_activity_detection(self, frame_np:np.array):
        """应用语音活动检测来优化音频缓冲区"""
        processed_audio = self._translate_pipe.voice_detect(frame_np.tobytes())
        speech_audio =  np.frombuffer(processed_audio.audio, dtype=np.float32)
        speech_status = processed_audio.speech_status
        return speech_audio, speech_status

    def _frame_processing_loop(self) -> None:
        """从队列获取音频帧并合并到缓冲区"""
        while not self._frame_processing_thread_stop.is_set():
            try:
                frame_np = self._frame_queue.get(timeout=0.1)
                frame_np, speech_status = self._apply_voice_activity_detection(frame_np)
                if frame_np is None:
                    continue
                with self.lock:
                    if self.frames_np is None:
                        self.frames_np = frame_np.copy()
                    else:
                        self.frames_np = np.append(self.frames_np, frame_np)
                    if speech_status == "END" and len(frame_np) > 0:
                        self.segments_queue.appendleft(self.frames_np.copy())
                        self.frames_np = np.array([], dtype=np.float32)
            except queue.Empty:
                pass

    def _process_transcription_results_2(self, seg_text:str,partial):

        item =  TransResult(
                seg_id=self.row_number,
                context=seg_text,
                from_=self.source_language,
                to=self.target_language,
                tran_content=self._translate_text_large(seg_text),
                partial=partial
            )
        if partial == False:
            self.row_number += 1
        return item

    def _transcription_processing_loop(self) -> None:
        """主转录处理循环"""
        frame_epoch = 1
        while not self._translate_thread_stop.is_set():

            if self.frames_np is None:
                time.sleep(0.2)
                continue

            with self.lock:
                if len(self.segments_queue) >0:
                    audio_buffer = self.segments_queue.pop()
                    partial = False
                else:
                    audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)]# 获取 1.5s * epoch 个音频长度
                    partial = True

            if len(audio_buffer) ==0:
                time.sleep(0.2)
                continue

            if len(audio_buffer) < int(self.sample_rate):
                silence_audio = np.zeros(self.sample_rate, dtype=np.float32)
                silence_audio[-len(audio_buffer):] = audio_buffer
                audio_buffer = silence_audio


            logger.debug(f"audio buffer size: {len(audio_buffer) / self.sample_rate:.2f}s")
            # try:
            meta_item = self._transcribe_audio(audio_buffer)
            segments = meta_item.segments
            logger.debug(f"Segments: {segments}")
            segments = filter_words(segments)
            if len(segments):
                seg_text = self.text_separator.join(seg.text for seg in segments)
                if self._temp_string:
                    seg_text = self._temp_string + seg_text

                if partial == False:
                    if len(seg_text) < config.TEXT_THREHOLD:
                        partial = True
                        self._temp_string = seg_text
                    else:
                        self._temp_string = ""


                result = self._process_transcription_results_2(seg_text, partial)
                self._send_result_to_client(result)
                time.sleep(0.1)

                if partial == False:
                    frame_epoch = 1
                else:
                    frame_epoch += 1
            # 处理转录结果并发送到客户端
            # for result in self._process_transcription_results(segments, audio_buffer):
            #     self._send_result_to_client(result)

            # except Exception as e:
            #     logger.error(f"Error processing audio: {e}")


    def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem:
        """转录音频并返回转录片段"""
        log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
        start_time = time.perf_counter()

        result = self._translate_pipe.transcrible(audio_buffer.tobytes(), self.source_language)
        segments = result.segments
        time_diff = (time.perf_counter() - start_time)
        logger.debug(f"📝 Transcrible Segments: {segments} ")
        # logger.debug(f"📝 Transcrible: {self.text_separator.join(seg.text for seg in segments)} ")
        log_block("📝 Transcrible output", f"{self.text_separator.join(seg.text for seg in segments)}", "")
        log_block("📝 Transcrible time", f"{time_diff:.3f}", "s")
        self._transcrible_time_cost = round(time_diff, 3)
        return result

    def _translate_text(self, text: str) -> str:
        """将文本翻译为目标语言"""
        if not text.strip():
            return ""

        log_block("🐧 Translation input ", f"{text}")
        start_time = time.perf_counter()

        result = self._translate_pipe.translate(text, self.source_language, self.target_language)
        translated_text = result.translate_content
        time_diff = (time.perf_counter() - start_time)
        log_block("🐧 Translation time ", f"{time_diff:.3f}", "s")
        log_block("🐧 Translation out ", f"{translated_text}")
        self._translate_time_cost = round(time_diff, 3)
        return translated_text

    def _translate_text_large(self, text: str) -> str:
        """将文本翻译为目标语言"""
        if not text.strip():
            return ""

        log_block("Translation input", f"{text}")
        start_time = time.perf_counter()

        result = self._translate_pipe.translate_large(text, self.source_language, self.target_language)
        translated_text = result.translate_content
        time_diff = (time.perf_counter() - start_time)
        log_block("Translation large model time ", f"{time_diff:.3f}", "s")
        log_block("Translation large model output", f"{translated_text}")
        self._translate_time_cost = round(time_diff, 3)
        return translated_text



    def _process_transcription_results(self, segments: List[TranscriptToken], audio_buffer: np.ndarray) -> Iterator[TransResult]:
        """
        处理转录结果,生成翻译结果

        Returns:
            TransResult对象的迭代器
        """

        if not segments:
            return
        start_time = time.perf_counter()
        for ana_result in self._transcrible_analysis.analysis(segments, len(audio_buffer)/self.sample_rate):
            if (cut_index :=ana_result.cut_index)>0:
                # 更新音频缓冲区,移除已处理部分
                self._update_audio_buffer(cut_index)
            if ana_result.partial():
                translated_context = self._translate_text(ana_result.context)
            else:
                translated_context = self._translate_text_large(ana_result.context)

            yield TransResult(
                seg_id=ana_result.seg_id,
                context=ana_result.context,
                from_=self.source_language,
                to=self.target_language,
                tran_content=translated_context,
                partial=ana_result.partial()
            )
            current_time = time.perf_counter()
            time_diff = current_time - start_time
            if config.SAVE_DATA_SAVE:
                self._save_queue.put(DebugResult(
                    seg_id=ana_result.seg_id,
                    transcrible_time=self._transcrible_time_cost,
                    translate_time=self._translate_time_cost,
                    context=ana_result.context,
                    from_=self.source_language,
                    to=self.target_language,
                    tran_content=translated_context,
                    partial=ana_result.partial()
                ))
            log_block("🚦 Traffic times diff", round(time_diff, 2), 's')


    def _send_result_to_client(self, result: TransResult) -> None:
        """发送翻译结果到客户端"""
        try:
            message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
            coro = self.websocket.send_text(message)
            future = asyncio.run_coroutine_threadsafe(coro, self.loop)
            future.add_done_callback(lambda fut: fut.exception() and self.stop())
        except RuntimeError:
            self.stop()
        except Exception as e:
            logger.error(f"Error sending result to client: {e}")

    def stop(self) -> None:
        """停止所有处理线程并清理资源"""
        self._translate_thread_stop.set()
        self._frame_processing_thread_stop.set()
        if config.SAVE_DATA_SAVE:
            self._save_task_stop.set()
        logger.info(f"Stopping transcription service for client: {self.client_uid}")