YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Fine-Tuned Gemma-7B CEFR Model

This is a fine-tuned version of unsloth/gemma-7b-bnb-4bit for CEFR-level sentence generation, evaluated with a fine-tuned classifier from Mr-FineTuner/Skripsi_validator_best_model.

  • Base Model: unsloth/gemma-7b-bnb-4bit
  • Fine-Tuning: LoRA with SMOTE-balanced dataset
  • Training Details:
    • Dataset: CEFR-level sentences with SMOTE and undersampling for balance
    • LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.5
    • Training Args: learning_rate=2e-5, batch_size=8, epochs=1, cosine scheduler
    • Optimizer: adamw_8bit
    • Early Stopping: Patience=3, threshold=0.01
  • Evaluation Metrics (Exact Matches):
    • CEFR Classifier Accuracy: 0.000
    • Precision (Macro): 0.000
    • Recall (Macro): 0.000
    • F1-Score (Macro): 0.000
  • Evaluation Metrics (Within 卤1 Level):
    • CEFR Classifier Accuracy: 0.833
    • Precision (Macro): 0.750
    • Recall (Macro): 0.833
    • F1-Score (Macro): 0.778
  • Other Metrics:
    • Perplexity: 3.187
    • Diversity (Unique Sentences): 0.010
    • Inference Time (ms): 6193.813
    • Model Size (GB): 4.2
    • Robustness (F1): 0.000
  • Confusion Matrix (Exact Matches):
  • Confusion Matrix (Within 卤1 Level):
  • Per-Class Confusion Metrics (Exact Matches):
    • A1: TP=0, FP=100, FN=100, TN=400
    • A2: TP=0, FP=300, FN=100, TN=200
    • B1: TP=0, FP=100, FN=100, TN=400
    • B2: TP=0, FP=100, FN=100, TN=400
    • C1: TP=0, FP=0, FN=100, TN=500
    • C2: TP=0, FP=0, FN=100, TN=500
  • Per-Class Confusion Metrics (Within 卤1 Level):
    • A1: TP=100, FP=0, FN=0, TN=500
    • A2: TP=100, FP=100, FN=0, TN=400
    • B1: TP=100, FP=0, FN=0, TN=500
    • B2: TP=100, FP=0, FN=0, TN=500
    • C1: TP=100, FP=0, FN=0, TN=500
    • C2: TP=0, FP=0, FN=100, TN=500
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/Test_03_gemma_trainPercen_myValidator_1epoch")
    tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/Test_03_gemma_trainPercen_myValidator_1epoch")
    
    # Example inference
    prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    

Uploaded using huggingface_hub.

Downloads last month
5
Safetensors
Model size
9B params
Tensor type
F32
BF16
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support