YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Fine-Tuned LoRA Adapters for Mixtral-8x7B CEFR Model

This repository contains the LoRA adapters for a fine-tuned version of unsloth/mistral-7b-bnb-4bit for CEFR-level sentence generation. The base model is available at unsloth/noSynthetic-mixtral_3epoch_02dropout_base.

  • Base Model: unsloth/noSynthetic-mixtral_3epoch_02dropout_base
  • Fine-Tuning: LoRA with SMOTE-balanced dataset
  • Training Details:
    • Dataset: CEFR-level sentences with SMOTE and undersampling for balance
    • LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.2
    • Training Args: learning_rate=1e-5, batch_size=8, epochs=3, cosine scheduler
    • Optimizer: adamw_8bit
    • Early Stopping: Patience=2, threshold=0.01
  • Evaluation Metrics (Exact Matches):
    • CEFR Classifier Accuracy: 0.167
    • Precision (Macro): 0.042
    • Recall (Macro): 0.167
    • F1-Score (Macro): 0.067
  • Evaluation Metrics (Within ±1 Level):
    • CEFR Classifier Accuracy: 0.500
    • Precision (Macro): 0.306
    • Recall (Macro): 0.500
    • F1-Score (Macro): 0.361
  • Other Metrics:
    • Perplexity: 9.119
    • Diversity (Unique Sentences): 0.033
    • Inference Time (ms): 1043.625
    • Model Size (GB): 28.0 (base model + LoRA adapters)
    • Robustness (F1): 0.063
  • Confusion Matrix (Exact Matches):
  • Confusion Matrix (Within ±1 Level):
  • Per-Class Confusion Metrics (Exact Matches):
    • A1: TP=0, FP=0, FN=10, TN=50
    • A2: TP=10, FP=30, FN=0, TN=20
    • B1: TP=0, FP=20, FN=10, TN=30
    • B2: TP=0, FP=0, FN=10, TN=50
    • C1: TP=0, FP=0, FN=10, TN=50
    • C2: TP=0, FP=0, FN=10, TN=50
  • Per-Class Confusion Metrics (Within ±1 Level):
    • A1: TP=10, FP=0, FN=0, TN=50
    • A2: TP=10, FP=10, FN=0, TN=40
    • B1: TP=10, FP=20, FN=0, TN=30
    • B2: TP=0, FP=0, FN=10, TN=50
    • C1: TP=0, FP=0, FN=10, TN=50
    • C2: TP=0, FP=0, FN=10, TN=50
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from peft import PeftModel
    
    # Load base model
    base_model = AutoModelForCausalLM.from_pretrained(
        "unsloth/noSynthetic-mixtral_3epoch_02dropout_base",
        quantization_config=BitsAndBytesConfig(load_in_4bit=True),
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained("unsloth/noSynthetic-mixtral_3epoch_02dropout_base")
    
    # Load LoRA adapters
    model = PeftModel.from_pretrained(base_model, "Mr-FineTuner/noSynthetic-mixtral_3epoch_02dropout_lora")
    
    # Example inference
    prompt = "<s>[INST] Generate a CEFR B1 level sentence. [/INST]"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    

Uploaded using huggingface_hub. Saved with safetensors for efficiency.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support