Hunyuan-MT-7B GGUF Models

Model Generation Details

This model was generated using llama.cpp at commit c8dedc99.


Quantization Beyond the IMatrix

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the --tensor-type option in llama.cpp to manually "bump" important layers to higher precision. You can see the implementation here:
👉 Layer bumping with llama.cpp

While this does increase model file size, it significantly improves precision for a given quantization level.

I'd love your feedback—have you tried this? How does it perform for you?


Click here to get info on choosing the right GGUF model format


🤗 Hugging Face  |   🕹️ Demo  |   🤖 ModelScope

🖥️ Official Website  |   GitHub  |   Technical Report

Model Introduction

The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

Key Features and Advantages

  • In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
  • Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
  • Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
  • A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size

Related News

  • 2025.9.1 We have open-sourced Hunyuan-MT-7B , Hunyuan-MT-Chimera-7B on Hugging Face.

 

模型链接

Model Name Description Download
Hunyuan-MT-7B Hunyuan 7B translation model 🤗 Model
Hunyuan-MT-7B-fp8 Hunyuan 7B translation model,fp8 quant 🤗 Model
Hunyuan-MT-Chimera Hunyuan 7B translation ensemble model 🤗 Model
Hunyuan-MT-Chimera-fp8 Hunyuan 7B translation ensemble model,fp8 quant 🤗 Model

Prompts

Prompt Template for ZH<=>XX Translation.


把下面的文本翻译成<target_language>,不要额外解释。

<source_text>

Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.


Translate the following segment into <target_language>, without additional explanation.

<source_text>

Prompt Template for Hunyuan-MT-Chmeria-7B


Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain.

The <source_language> segment:
```<source_text>```

The multiple <target_language> translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```

 

Use with transformers

First, please install transformers, recommends v4.56.0

pip install transformers==v4.56.0

The following code snippet shows how to use the transformers library to load and apply the model.

!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.

we use tencent/Hunyuan-MT-7B for example

from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/Hunyuan-MT-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

{
  "top_k": 20,
  "top_p": 0.6,
  "repetition_penalty": 1.05,
  "temperature": 0.7
}

Supported languages:

Languages Abbr. Chinese Names
Chinese zh 中文
English en 英语
French fr 法语
Portuguese pt 葡萄牙语
Spanish es 西班牙语
Japanese ja 日语
Turkish tr 土耳其语
Russian ru 俄语
Arabic ar 阿拉伯语
Korean ko 韩语
Thai th 泰语
Italian it 意大利语
German de 德语
Vietnamese vi 越南语
Malay ms 马来语
Indonesian id 印尼语
Filipino tl 菲律宾语
Hindi hi 印地语
Traditional Chinese zh-Hant 繁体中文
Polish pl 波兰语
Czech cs 捷克语
Dutch nl 荷兰语
Khmer km 高棉语
Burmese my 缅甸语
Persian fa 波斯语
Gujarati gu 古吉拉特语
Urdu ur 乌尔都语
Telugu te 泰卢固语
Marathi mr 马拉地语
Hebrew he 希伯来语
Bengali bn 孟加拉语
Tamil ta 泰米尔语
Ukrainian uk 乌克兰语
Tibetan bo 藏语
Kazakh kk 哈萨克语
Mongolian mn 蒙古语
Uyghur ug 维吾尔语
Cantonese yue 粤语

Citing Hunyuan-MT:

@misc{hunyuan_mt,
      title={Hunyuan-MT Technical Report}, 
      author={Mao Zheng and Zheng Li and Bingxin Qu and Mingyang Song and Yang Du and Mingrui Sun and Di Wang},
      year={2025},
      eprint={2509.05209},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.05209}, 
}

🚀 If you find these models useful

Help me test my AI-Powered Quantum Network Monitor Assistant with quantum-ready security checks:

👉 Quantum Network Monitor

The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : Source Code Quantum Network Monitor. You will also find the code I use to quantize the models if you want to do it yourself GGUFModelBuilder

💬 How to test:
Choose an AI assistant type:

  • TurboLLM (GPT-4.1-mini)
  • HugLLM (Hugginface Open-source models)
  • TestLLM (Experimental CPU-only)

What I’m Testing

I’m pushing the limits of small open-source models for AI network monitoring, specifically:

  • Function calling against live network services
  • How small can a model go while still handling:
    • Automated Nmap security scans
    • Quantum-readiness checks
    • Network Monitoring tasks

🟡 TestLLM – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):

  • Zero-configuration setup
  • ⏳ 30s load time (slow inference but no API costs) . No token limited as the cost is low.
  • 🔧 Help wanted! If you’re into edge-device AI, let’s collaborate!

Other Assistants

🟢 TurboLLM – Uses gpt-4.1-mini :

  • **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
  • Create custom cmd processors to run .net code on Quantum Network Monitor Agents
  • Real-time network diagnostics and monitoring
  • Security Audits
  • Penetration testing (Nmap/Metasploit)

🔵 HugLLM – Latest Open-source models:

  • 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

💡 Example commands you could test:

  1. "Give me info on my websites SSL certificate"
  2. "Check if my server is using quantum safe encyption for communication"
  3. "Run a comprehensive security audit on my server"
  4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code on. This is a very flexible and powerful feature. Use with caution!

Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is open source. Feel free to use whatever you find helpful.

If you appreciate the work, please consider buying me a coffee ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊

Downloads last month
2,947
GGUF
Model size
8B params
Architecture
hunyuan-dense
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support