ColBERT MUVERA Femto
This is a PyLate model finetuned from neuml/bert-hash-femto on the msmarco-en-bge-gemma unnormalized split dataset. It maps sentences & paragraphs to sequences of 50-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
This model is trained with un-normalized scores, making it compatible with MUVERA fixed-dimensional encoding.
Usage (txtai)
This model can be used to build embeddings databases with txtai for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
Note: txtai 9.0+ is required for late interaction model support
import txtai
embeddings = txtai.Embeddings(
sparse="neuml/colbert-muvera-femto",
content=True
)
embeddings.index(documents())
# Run a query
embeddings.search("query to run")
Late interaction models excel as reranker pipelines.
from txtai.pipeline import Reranker, Similarity
similarity = Similarity(path="neuml/colbert-muvera-femto", lateencode=True)
ranker = Reranker(embeddings, similarity)
ranker("query to run")
Usage (PyLate)
Alternatively, the model can be loaded with PyLate.
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="neuml/colbert-muvera-femto",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertHashModel
(1): Dense({'in_features': 50, 'out_features': 50, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Evaluation
BEIR Subset
The following table shows a subset of BEIR scored with the txtai benchmarks script.
Scores reported are ndcg@10 and grouped into the following three categories.
FULL multi-vector maxsim
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|---|---|---|---|---|---|
| ColBERT v2 | 110M | 0.3165 | 0.1497 | 0.6456 | 0.3706 |
| ColBERT MUVERA Femto | 0.2M | 0.2513 | 0.0870 | 0.4710 | 0.2698 |
| ColBERT MUVERA Pico | 0.4M | 0.3005 | 0.1117 | 0.6452 | 0.3525 |
| ColBERT MUVERA Nano | 0.9M | 0.3180 | 0.1262 | 0.6576 | 0.3673 |
| ColBERT MUVERA Micro | 4M | 0.3235 | 0.1244 | 0.6676 | 0.3718 |
MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|---|---|---|---|---|---|
| ColBERT v2 | 110M | 0.3025 | 0.1538 | 0.6278 | 0.3614 |
| ColBERT MUVERA Femto | 0.2M | 0.2316 | 0.0858 | 0.4641 | 0.2605 |
| ColBERT MUVERA Pico | 0.4M | 0.2821 | 0.1004 | 0.6090 | 0.3305 |
| ColBERT MUVERA Nano | 0.9M | 0.2996 | 0.1201 | 0.6249 | 0.3482 |
| ColBERT MUVERA Micro | 4M | 0.3095 | 0.1228 | 0.6464 | 0.3596 |
MUVERA encoding only
| Model | Parameters | NFCorpus | SciDocs | SciFact | Average |
|---|---|---|---|---|---|
| ColBERT v2 | 110M | 0.2356 | 0.1229 | 0.5002 | 0.2862 |
| ColBERT MUVERA Femto | 0.2M | 0.1851 | 0.0411 | 0.3518 | 0.1927 |
| ColBERT MUVERA Pico | 0.4M | 0.1926 | 0.0564 | 0.4424 | 0.2305 |
| ColBERT MUVERA Nano | 0.9M | 0.2355 | 0.0807 | 0.4904 | 0.2689 |
| ColBERT MUVERA Micro | 4M | 0.2348 | 0.0882 | 0.4875 | 0.2702 |
Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts.
As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this GitHub Issue for more.
This model is only 250K parameters with a file size of 950K. Keeping that in mind, it's surprising how decent the scores are!
Nano BEIR
- Dataset:
NanoBEIR_mean - Evaluated with
pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
| Metric | Value |
|---|---|
| MaxSim_accuracy@1 | 0.4318 |
| MaxSim_accuracy@3 | 0.5753 |
| MaxSim_accuracy@5 | 0.64 |
| MaxSim_accuracy@10 | 0.7062 |
| MaxSim_precision@1 | 0.4318 |
| MaxSim_precision@3 | 0.2655 |
| MaxSim_precision@5 | 0.215 |
| MaxSim_precision@10 | 0.149 |
| MaxSim_recall@1 | 0.2379 |
| MaxSim_recall@3 | 0.3485 |
| MaxSim_recall@5 | 0.4115 |
| MaxSim_recall@10 | 0.4745 |
| MaxSim_ndcg@10 | 0.4495 |
| MaxSim_mrr@10 | 0.5194 |
| MaxSim_map@100 | 0.3725 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32learning_rate: 0.0003num_train_epochs: 1warmup_ratio: 0.05fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0003weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 4.0.2
- PyLate: 1.3.2
- Transformers: 4.57.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
- Downloads last month
- 642
Model tree for NeuML/colbert-muvera-femto
Base model
NeuML/bert-hash-femtoDataset used to train NeuML/colbert-muvera-femto
Collection including NeuML/colbert-muvera-femto
Evaluation results
- Maxsim Accuracy@1 on NanoClimateFEVERself-reported0.140
- Maxsim Accuracy@3 on NanoClimateFEVERself-reported0.320
- Maxsim Accuracy@5 on NanoClimateFEVERself-reported0.360
- Maxsim Accuracy@10 on NanoClimateFEVERself-reported0.520
- Maxsim Precision@1 on NanoClimateFEVERself-reported0.140
- Maxsim Precision@3 on NanoClimateFEVERself-reported0.113
- Maxsim Precision@5 on NanoClimateFEVERself-reported0.076
- Maxsim Precision@10 on NanoClimateFEVERself-reported0.056
- Maxsim Recall@1 on NanoClimateFEVERself-reported0.085
- Maxsim Recall@3 on NanoClimateFEVERself-reported0.165