SimNPO-Unlearned Models
					Collection
				
This collection hosts the SimNPO-unlearned models over TOFU, MUSE, and WMDP unlearning benchmarks.
					• 
				7 items
				• 
				Updated
					
				•
					
					2
This model uses the SimNPO unlearning algorithm with the following optimization objective:
Unlearning hyper-parameters:
1e-50.71.00.0import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-Books-iclm-7b", torch_dtype=torch.bfloat16, device_map='auto')
| VerbMem Df | KnowMem Df | PrivLeak | KnowMem Dr | |
|---|---|---|---|---|
| Origin | 99.56 | 58.32 | -56.32 | 67.01 | 
| Retrain | 14.30 | 28.90 | 0.00 | 74.50 | 
| NPO | 0.00 | 0.00 | -31.17 | 23.71 | 
| SimNPO | 0.00 | 0.00 | -19.82 | 48.27 | 
If you use this model in your research, please cite:
@article{fan2024simplicity,
  title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
  author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
  journal={arXiv preprint arXiv:2410.07163},
  year={2024}
}
Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple
Base model
muse-bench/MUSE-books_target