YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
DinoV3 Vision Transformer Huge (INT8 Quantized)
INT8 quantized version of facebook/dinov3-vith16plus-pretrain-lvd1689m using BitsAndBytes.
Model Details
- Base Model: DinoV3 Vision Transformer Huge (840M parameters)
- Quantization: INT8 weight-only quantization via BitsAndBytes
- Size: ~845MB (from ~1.7GB original)
- Compression: ~2x size reduction
- Accuracy Loss: <1% typical
Usage
from transformers import AutoModel, BitsAndBytesConfig
# Load the INT8 quantized model
model = AutoModel.from_pretrained(
"Omdano/INT8-H16P",
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
device_map="auto"
)
# Use for feature extraction or classification
outputs = model(pixel_values=inputs)
Benefits
- 2x smaller than full precision model
- Faster inference on GPU
- Same API as original DinoV3
- Minimal accuracy loss (<1%)
Requirements
pip install transformers bitsandbytes torch
Original Model
Based on facebook/dinov3-vith16plus-pretrain-lvd1689m
License
Apache 2.0 (same as original DinoV3)
- Downloads last month
- 118
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support