P1-30B-A3B / README.md
JC-Chen's picture
Update README.md
5ffe26a verified
---
language:
- en
- multilingual
tags:
- physics
- reinforcement-learning
- olympiad
- reasoning
- competition
- education
license: apache-2.0
pipeline_tag: text-generation
---
<div align="center">
<h1 style="font-size: 2em; font-weight: bold;">P1: Mastering Physics Olympiads with Reinforcement Learning</h1>
</div>
<p align="center">
<a href="https://prime-rl.github.io/P1/"><b>🌐 P1 Project Page</b></a> |
<a href="https://phyarena.github.io/"><b>πŸ† HiPhO Leaderboard</b></a>
</p>
<p align="center">
<img src="https://raw.githubusercontent.com/PRIME-RL/P1/main/docs/imgs/Score_IPhO_2025_P1_v2.jpg" style="width: 800px" align=center>
</p>
<p align="center">
<i>High-performance mid-scale model for physics reasoning</i>
</p>
## Model Description
**P1-30B-A3B** is the mid-size variant of the P1 series, a high-performance open-source language model specialized in physics reasoning. Built on *Qwen3-30B-A3B-Thinking-2507* and refined through multi-stage reinforcement learning on curated physics competition data, P1-30B-A3B achieves impressive results while maintaining reasonable computational requirements, making it accessible for researchers working with physics problems.
### Key Highlights
- πŸ₯ˆ **IPhO 2025 Silver-tier Performance**: Strong competitive showing at international physics olympiad (18.5/30 points)
- πŸ₯‡ **HiPhO Excellence**: 8 gold medals, 4 silver medals, and 1 bronze medal across 13 physics contests
## Performance Benchmarks
### IPhO 2025 Results
<div align="center">
| Model | Score | Medal |
|:-----:|:-----:|:-----:|
| **P1-30B-A3B** | **18.5** | **πŸ₯ˆ Silver** |
| DeepSeek-R1 | 18.5 | **πŸ₯ˆ Silver** |
| Qwen3-235B-A22B-Thinking-2507 | 17.1 | **πŸ₯ˆ Silver** |
| Qwen3-30B-A3B-Thinking-2507 | 15.6 | **πŸ₯ˆ Silver** |
</div>
### HiPhO Comprehensive Results
<div align="center">
| Category | P1-30B-A3B | Qwen3-235B-A22B | DeepSeek-R1 | Qwen3-30B-A3B (Base) |
|:--------:|:----------:|:---------------:|:-----------:|:--------------------:|
| **Overall Score** | **32.5** | 33.5 | 32.9 | 29.9 |
| Gold Medals (πŸ₯‡) | 8 | 10 | 9 | 6 |
| Silver Medals (πŸ₯ˆ) | 4 | 3 | 3 | 6 |
| Bronze Medals (πŸ₯‰) | 1 | 0 | 1 | 1 |
| Total Contests | 13 | 13 | 13 | 13 |
</div>
### Generalization to STEM Tasks
Beyond physics reasoning, P1 improves across multiple domains. As shown below, P1-30B-A3B outperforms its base model Qwen3-30B-A3B-Thinking-2507 on math, coding, and STEM benchmarks, demonstrating strong generalization of physics reasoning.
<div align="center">
| Model | AIME24 | AIME25 | HMMT | GPQA | HLE | LiveCodeBench | LiveBench |
|:-----:|:------:|:------:|:----:|:----:|:---:|:-------------:|:---------:|
| Qwen3-30B-A3B-Thinking-2507 (Base) | 90.4 | 85.0 | 71.3 | 73.0 | 11.6 | 66.7 | 76.6 |
| **P1-30B-A3B** | **91.0** | **91.0** | **76.9** | **74.4** | **14.3** | **68.1** | **77.0** |
</div>
## Usage
### Basic Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "P1-30B-A3B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Physics problem solving
prompt = """Solve this physics problem:
A pendulum of length L = 1.0 m swings with small amplitude.
Calculate the period of oscillation and explain your reasoning.
Use g = 9.8 m/sΒ²"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_length=81920,
temperature=0.6,
top_p=0.9,
do_sample=True
)
solution = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(solution)
```
## πŸ™ Acknowledgements
We are grateful to the open-source community for their invaluable contributions. Special thanks to:
- **[Qwen3](https://huggingface.co/collections/Qwen/qwen3)** - for providing the foundational base models that powered our research
- **[slime](https://github.com/THUDM/slime)** - for their innovative work on efficient reinforcement learning framework that powered our training pipeline
- **[verl](https://github.com/volcengine/verl)** - for the versatile reinforcement learning framework that enabled our training pipeline
- **[sglang](https://github.com/sgl-project/sglang)** - for the efficient LLM serving and inference infrastructure
- **[Megatron-LM](https://github.com/NVIDIA/Megatron-LM)** - for the large-scale model training framework
## Citation
```bibtex
@misc{p1-2025,
title={P1: Mastering Physics Olympiads with Reinforcement Learning},
author={P1 Team},
year={2025},
url={https://prime-rl.github.io/P1/}
}
```
</div>