|
|
--- |
|
|
license: cc-by-sa-4.0 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- te_dx_jp |
|
|
model-index: |
|
|
- name: t5-base-TEDxJP-3front-1body-3rear |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# t5-base-TEDxJP-3front-1body-3rear |
|
|
|
|
|
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.4427 |
|
|
- Wer: 0.1709 |
|
|
- Mer: 0.1651 |
|
|
- Wil: 0.2519 |
|
|
- Wip: 0.7481 |
|
|
- Hits: 55802 |
|
|
- Substitutions: 6391 |
|
|
- Deletions: 2394 |
|
|
- Insertions: 2252 |
|
|
- Cer: 0.1337 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0001 |
|
|
- train_batch_size: 32 |
|
|
- eval_batch_size: 32 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_ratio: 0.1 |
|
|
- num_epochs: 10 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| |
|
|
| 0.628 | 1.0 | 1457 | 0.4785 | 0.2008 | 0.1912 | 0.2803 | 0.7197 | 54855 | 6650 | 3082 | 3234 | 0.1735 | |
|
|
| 0.5271 | 2.0 | 2914 | 0.4292 | 0.1779 | 0.1718 | 0.2602 | 0.7398 | 55387 | 6527 | 2673 | 2293 | 0.1469 | |
|
|
| 0.4724 | 3.0 | 4371 | 0.4222 | 0.1719 | 0.1664 | 0.2530 | 0.7470 | 55610 | 6365 | 2612 | 2123 | 0.1353 | |
|
|
| 0.4125 | 4.0 | 5828 | 0.4174 | 0.1707 | 0.1653 | 0.2512 | 0.7488 | 55694 | 6304 | 2589 | 2135 | 0.1342 | |
|
|
| 0.3646 | 5.0 | 7285 | 0.4218 | 0.1712 | 0.1655 | 0.2521 | 0.7479 | 55756 | 6373 | 2458 | 2224 | 0.1339 | |
|
|
| 0.3232 | 6.0 | 8742 | 0.4253 | 0.1695 | 0.1642 | 0.2505 | 0.7495 | 55726 | 6340 | 2521 | 2087 | 0.1333 | |
|
|
| 0.3583 | 7.0 | 10199 | 0.4303 | 0.1699 | 0.1645 | 0.2514 | 0.7486 | 55733 | 6393 | 2461 | 2120 | 0.1338 | |
|
|
| 0.2894 | 8.0 | 11656 | 0.4355 | 0.1699 | 0.1643 | 0.2508 | 0.7492 | 55827 | 6371 | 2389 | 2215 | 0.1325 | |
|
|
| 0.2825 | 9.0 | 13113 | 0.4399 | 0.1705 | 0.1648 | 0.2518 | 0.7482 | 55785 | 6409 | 2393 | 2207 | 0.1334 | |
|
|
| 0.2901 | 10.0 | 14570 | 0.4427 | 0.1709 | 0.1651 | 0.2519 | 0.7481 | 55802 | 6391 | 2394 | 2252 | 0.1337 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.21.2 |
|
|
- Pytorch 1.12.1+cu116 |
|
|
- Datasets 2.4.0 |
|
|
- Tokenizers 0.12.1 |
|
|
|