ner-bert-lenerbr-v2
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1931
- Precision: 0.8384
- Recall: 0.9092
- F1: 0.8724
- Accuracy: 0.9699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0601 | 1.0 | 979 | 0.1134 | 0.8575 | 0.8516 | 0.8546 | 0.9715 |
| 0.0345 | 2.0 | 1958 | 0.1402 | 0.7896 | 0.9022 | 0.8421 | 0.9657 |
| 0.0243 | 3.0 | 2937 | 0.1350 | 0.8124 | 0.9060 | 0.8566 | 0.9696 |
| 0.0256 | 4.0 | 3916 | 0.1592 | 0.7624 | 0.9073 | 0.8286 | 0.9640 |
| 0.0143 | 5.0 | 4895 | 0.1951 | 0.8462 | 0.8983 | 0.8715 | 0.9678 |
| 0.0139 | 6.0 | 5874 | 0.1874 | 0.8252 | 0.9110 | 0.8660 | 0.9679 |
| 0.0051 | 7.0 | 6853 | 0.1685 | 0.8301 | 0.9049 | 0.8659 | 0.9692 |
| 0.0067 | 8.0 | 7832 | 0.1931 | 0.8384 | 0.9092 | 0.8724 | 0.9699 |
| 0.0018 | 9.0 | 8811 | 0.2004 | 0.8206 | 0.9110 | 0.8634 | 0.9692 |
| 0.0044 | 10.0 | 9790 | 0.2000 | 0.8295 | 0.9090 | 0.8674 | 0.9694 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Model tree for Palu1006/ner-bert-lenerbr-v2
Base model
neuralmind/bert-base-portuguese-casedDataset used to train Palu1006/ner-bert-lenerbr-v2
Evaluation results
- Precision on lener_brvalidation set self-reported0.838
- Recall on lener_brvalidation set self-reported0.909
- F1 on lener_brvalidation set self-reported0.872
- Accuracy on lener_brvalidation set self-reported0.970