email-spam-classifier-new
	
import streamlit as st
import pickle
import string
import pickle
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
nltk.download('stopwords')   
nltk.download('punkt')       
ps = PorterStemmer()
def transform_text(text):
    text = text.lower()
    text = nltk.word_tokenize(text)
    y = []
    for i in text:
        if i.isalnum():
            y.append(i)
    text = y[:]
    y.clear()
    for i in text:
        if i not in stopwords.words('english') and i not in string.punctuation:
            y.append(i)
    text = y[:]
    y.clear()
    for i in text:
        y.append(ps.stem(i))
    return " ".join(y)
tfidf = pickle.load(open('vectorizer.pkl','rb'))
model = pickle.load(open('model.pkl','rb'))
st.title("Email/SMS Spam Classifier")
input_sms = st.text_area("Enter the message")
if st.button('Predict'):
    
    transformed_sms = transform_text(input_sms)
    
    vector_input = tfidf.transform([transformed_sms])
    
    result = model.predict(vector_input)[0]
    
    if result == 1:
        st.header("Spam")
    else:
        st.header("Not Spam")
(back to top)